

1

An Empirical Investigation of the Defect Detection Capabilities of
Requirements Specification Languages

Erik Kamsties1, Antje von Knethen1, Jan Philipps2, and Bernhard Schätz2

1Fraunhofer Institute for Experimental Software Engineering
Sauerwiesen 6, D-67661 Kaiserslautern, Germany

Phone: +49 6301 707 219 Fax: -200
{kamsties, vknethen}@iese.fhg.de

2Department of Computer Science, Technical University of Munich,

Arcisstraße 21, D-80290 München, Germany
Phone: +49 89 289 22398 Fax: -25310

{philipps, schaetz}@informatik.tu-muenchen.de

Abstract
It is a frequently reported effect of applying requirements specification languages that the
formalization of informal requirements leads to the detection of defects such as
omissions, conflicts, and ambiguities. However, there is little quantitative data available
on this effect.

This paper presents an empirical study with requirements specification languages, which
addresses two research questions. First, which types of defects are detected by a
requirements engineer during the development of a requirements model, and second,
what happen to those defects that are not detected?

The results indicate that ambiguities require special care during formalization, because
they are less frequently reported than other types of defects. Instead, ambiguities tend to
become often disambiguated unconsciously, which is a serious problem, because implicit
assumptions are more likely than in our study to be wrong when the system is more
complex. Moreover, ambiguities are misinterpreted more often than other types of
defects. Finally, ambiguities, if noticed, require immediate clarification.

1. INTRODUCTION
The use of a requirements specification language (RSL) in requirements engineering (RE) has many-
fold benefits. Precise requirements models allow for better communication among various
stakeholders, checks of completeness and consistency and proofs of safety properties can be
automated, and the dynamic behavior of the requirements models can be simulated. Furthermore, they
make the RE process more repeatable than if ad hoc techniques were be applied. According to
Sommerville and Sawyer [SS97], RSLs are a “vehicle for the analyst to add clarity to the fuzzy picture
provided by the stakeholder requirements, domain constraints.... They are concerned with imposing a
structure on the vague notation of a system”. It is this characteristic that leads to a frequently reported
side-effect of the application of RSLs: defects in the initial requirements are detected during the
development of requirements models [e.g., Win90, SS97, EC97].

We subsume under the term requirements specification languages requirements modeling languages
and formal methods for describing requirements. A requirements modeling language offers a
graphical language with a formal syntax, that is, a set of diagram elements, and a semi-formal
semantics, which is typically stated in natural language. Examples of requirements modeling
languages include the Unified Modeling Language (UML) [UML99]. A formal method offers a
language with a formal syntax and formal semantics. In most cases, this language is mathematical, but
also graphical and tabular languages have been proposed. A formal method allows describing
requirements rigorously and allows analyzing them extensively. Examples of formal methods include

erik
Published in Proceedings of the 6th CAiSE/IFIP8.1 International Workshop on Evaluation of Modeling Methods in System Analysis and Design (EMMSAD'01), Interlaken, Switzerland, 4-5 June 2001.

erik

2

SCR [HJL96], SDL [ITU93], VDM [Jon90], and Z [Spi92]. A requirements model is a set of
requirements that is represented using a RSL. It is a formalized statement of requirements.

This paper reports on an empirical study aimed at answering two research questions about the defects
spotted in informal requirements during formalization. A defect is a product anomaly in a
requirements, design, or code document that leads to a misbehavior of a software system. We focus on
conflicts, incompletenesses, and ambiguities in requirements documents. We address the following
questions: Are there differences in the numbers of conflicts, incompletenesses, and ambiguities

 - that are found during creation of a requirements model?
 - that are not found and, thus, are contained in the final requirements model?

We expected differences, because a RSL forces the requirements engineer to be precise, that is, to
resolve ambiguities before creating a requirements model. Thus, ambiguities become unambiguously
right or wrong statements in a requirements model. Only a few types of ambiguities become conflicts,
which are detected by the consistency checker of a CASE tool. On the other hand, a requirements
model can be inconsistent or incomplete. Incompletenesses and, in particular, conflicts can violate
syntactic or semantic rules of a RSL and then are detected by a CASE tool.

Seventeen graduate students from the University of Kaiserslautern and the Technical University of
Munich participated in the study. The task was to develop a requirements model of a consumer
electronics product, namely the Tamagotchi toy [Ban97]. The most popular RSLs, e.g., UML, SDL, as
well as research prototypes, e.g., FOCUS [HMR+98], were used together with CASE tools.

This paper is structured as follows. First, the applied RSLs are briefly described. Second, the previous
empirical research is reviewed. Then, the evaluation framework is discussed and the design of the
study. Finally, the results are presented, threats to validity are discussed, and conclusions are drawn.

2. REQUIREMENTS SPECIFICATION LANGUAGES
The objects of the study were seven RSLs, namely Focus, SCR, SDL, OCTOPUS, ROOM, Statemate,
and UML. The selection of these languages was driven by the availability of CASE tools, availability
of experts for supervising the subjects, and practical relevance of languages. Furthermore, the
languages should represent a good balance between emerging object-oriented RSLs, and traditional
structural RSLs. The RSLs and the used CASE tools are described briefly in the following.

Focus is a formal method for modeling distributed systems. Its semantics is based on stream
processing functions [Kah74]. AutoFocus is a prototype CASE tool developed by the Technical
University of Munich, which implements the semantics of Focus [HMR+98].

The SCR (Software Cost Reduction) requirements specification language was developed by the Naval
Research Laboratory (NRL) of the US Navy in 1978 [Hen80]. Recently, the NRL presented a formal
semantics of SCR [HJL96] and developed a CASE tool called SCR* [HBGL95].

SDL (Specification and Description Language) is standardized by the International Tele-
communication Union. It was developed in the late 1960s. Object-oriented concepts have been
introduced into the version SDL 92 [ITU93]. SDL is considered today a formal description technique.
We used the CASE tool ObjectGEODE from Verilog.

OCTOPUS [AKZ96] was developed in 1996 by Nokia. It is an object-oriented method based on OMT
[RBP+91] and Fusion [Col94] for all phases of the development of embedded systems. There is no
CASE tool for OCTOPUS, however, Awad et al. recommend among others Software through
Pictures/OMT (StP) from Aonix, which was applied in the case study.

ROOM (Real-time Object-Oriented Modeling) is an object-oriented method for developing distributed
systems created by Bell Northern Research, Ltd. in 1994 [SGW94]. We used the CASE tool
ObjecTime Developer from ObjecTime Systems.

Statecharts are a state machine based description technique developed by David Harel [Har87]. The
CASE tool Statemate MAGNUM from I-Logix extends the behavioral statecharts view with a
structural and a functional view [HLN+90].

3

The Unified Modeling Language (UML) was presented by Booch, Rumbaugh, and Jacobson in 1997,
the applied version was 1.3 [UML99]. The CASE tool Rhapsody by I-Logix was used, which allows
generating executable code from a subset of UML diagrams.

All employed CASE tools, except StP/OMT, offer simulation of requirements models or full code
generation. That is, there is some sort of formal semantics behind every RSL, except OCTOPUS.

3. PREVIOUS EMPIRICAL RESEARCH
Studies with RSLs have a long tradition at the International Workshop on Software Specification and
Design (IWSSD) since the mid-80s and at the International Workshop on Evaluation of Modeling
Methods in Systems Analysis and Design (EMMSAD) since the mid-90s.

There is an increasing number of empirical studies concerned with RSLs, e.g., Lewerenz and Lindner
[LL94]; Ardis et.al. [ACJ+96]; Abrial, Boerger, and Langmaack [ABL96]; Bahill, Alford, Bharathan
et.al [BAB+98], and the whole EMMSAD proceedings are devoted on this topic. However, there is a
lack of commonly accepted criteria for method comparison [WGW97].

Finkelstein et.al suggested that empirical studies on RSLs should focus on processes rather than
products, i.e., they should focus on causes rather than symptoms of strength and weaknesses of RSLs
[FFFL97]. One process aspect is the previously mentioned side-effect of RSLs to help spot defects
during formalization of informal requirements.

This side-effect was studied to our knowledge only by Wing post-mortem in specifications written for
the fourth IWSSD workshop [Win88]. Wing made two conclusions. First, RSLs do not radically
differ from one another in this respect. Second, the RSLs can be used to identify many, but not all,
deficiencies in a set of informally stated requirements. Wing does not provide quantitative data.

4. EVALUATION FRAMEWORK
We extended the evaluation framework of Wing. We propose to track (1) the number of defects
revealed in informal requirements during creation of a requirements model and (2) the number of
defects that slip into the requirements model. Figure 1 shows all paths that a defect in the informal
requirements can take. First, a specifier may observe a defect during formalization and report it to the
customer. Then, he or she receives a solution to the defect. Thus, such a defect is removed in the
requirements model. We assume that a specifier does not introduce a defect into the requirements
model after knowing the solution, but it is possible. Defects that are removed in the requirements
model because they were reported during formalization are called customer-resolved defects. Second,
a specifier does not report a defect, because, e.g., he or she does not recognize it. Nevertheless, such a
defect can be removed by chance. Defects that are removed in the requirements model but which were
not reported during formalization are called self-resolved defects. Third, a defect that was not reported
residues in the requirement document. Residual defects are further distinguished into forwarded and
transformed defects. Some defects in the informal requirements are neither removed nor residual in the
requirements model, because they are outside the scope of the requirements model. Therefore, the set
of reported defects is not necessarily equal to the set of customer-resolved defects.

Figure 1. Classification of Defects

4

In the following, we explain the defect classes that are of particular interest in our study in more detail:

• Reported Defect. Precisely speaking, a defect was recognized by a specifier and was reported to
the experimenters while reading an informal requirement or while formalizing an informal
requirement. These two activities usually are intertwined and we made no attempt to distinguish
them.

• Removed Defect. The requirements model is incorrect with respect to the informal requirements,
but correct with respect to the customer’s expectations.

• Self-resolved Defect. The defect has been removed, but it has not been reported, e.g., it has been
removed by the requirements engineer using his or her background knowledge.

• Forwarded Defect. The same defect of the informal requirements is included in requirements
model. The requirements model is correct with respect to the informal requirements, but incorrect
with respect to the customer’s expectations. For instance, an incomplete informal requirement has
not been recognized and has become an incomplete statement in the requirements model.

• Transformed Defect. A defect in the informal requirements has been transformed into another type
of defect in the requirements model. The requirements model is incorrect with respect to the
informal requirements as well as with respect to the customer’s expectations. For instance, an
ambiguous requirement has been misinterpreted and has become an incorrect statement in the
requirements model.

• Defect out of scope. The requirements model is incomplete with respect to the informal
requirements as well as with respect to the customer’s expectations. For example, if a defect is
concerned with a timing requirement, and timing requirements cannot be specified with the
applied RSL, e.g., because of lack of notational power of the RSL, then the defect is out of scope.

Defects newly introduced into the requirements models were not investigated in this study, because
the effort would have been too high to inspect the requirements models in detail.
We limited the types of defects considered in the study to defects that can be identified without
knowledge of the application domain, because we did not expect the subjects to have deep knowledge
about the application domain. In particular, we were interested in incompletenesses (only those
detectable without domain knowledge), conflicts, and ambiguities. For the same reason, we did not
consider incorrect, unrealistic, or extraneous requirements.

A requirements document is incomplete if information is missing such as a function or a definition of a
response to particular input data. A requirement is ambiguous if it has several interpretations.
Ambiguities include not only linguistic ambiguities such as an uncertain pronoun reference, but also
ambiguities about the actual system and its behavior [SMT92]. Two requirements are inconsistent if
they state facts that cannot both be true, or if they express actions that cannot be carried out at the
same time. This type of defect is also called conflict. Incompletenesses and ambiguities can be
distinguished by the type of required correction activity. The former require adding information, while
the latter just require rephrasing the present information so that a requirement unambiguously conveys
its meaning.

5. EXPERIMENTAL STUDY
This section describes hypotheses, design, instruments, preparation, execution, and data validation.

Hypotheses. The hypotheses followed the research questions, which are stated in the beginning of this
paper. We assume that there are no significant differences between the investigated RSLs in spotting
defects, because they all address behavioral requirements and provide some state-machine-based
language to describe them. Rather, we expect differences between the defect types. A RSL forces the
requirements engineer to be precise. However, we expect that a specifier does not necessarily
recognize an ambiguity as such and misinterprets it, while the structure imposed by the RSL on the
requirements helps detect inconsistencies and incompletenesses (recall that we limited the considered
kinds of incompletenesses to those that are detectable without domain knowledge). Therefore, we
hypothesize that fewer ambiguities and more incompletenesses and conflicts are reported than one
would expect based on the overall numbers of those defects in the requirements document. Our

5

alternative hypothesis is
H1: There is a difference between the observed and expected numbers of incompletenesses,

conflicts, and ambiguities that are reported during formalization using a RSL.
Following the above argumentation, we hypothesize that fewer ambiguities and more
incompletenesses and conflicts are removed than one would expect based on the overall numbers of
those defects in the requirements document, because ambiguities are less frequently recognized.
Rather, one portion of the ambiguities that was not recognized is misinterpreted. Thus, we hypothesize
that more ambiguities and fewer incompletenesses and conflicts are transformed than one would
expect based on the overall numbers of those defects in the requirements document. The other portion
of ambiguities that was not recognized is correctly interpreted with the help of other requirements and
real-world knowledge. Thus, we hypothesize that more ambiguities and fewer incompletenesses and
conflicts are self-resolved than one would expect based on the overall numbers of those defects in the
requirements document. Finally, we hypothesize that fewer ambiguities and more incompletenesses
and conflicts are forwarded than one would expect based on the overall numbers of those defects in
the requirements document. A requirements model can be inconsistent and incomplete to some degree,
even if it is checked by a CASE tool. However, ambiguities must be removed or transformed, thus, we
expected virtually no forwarded ambiguities in the requirements model. Our alternative hypotheses are

H2: There is a difference between the observed and expected numbers of incompletenesses,
conflicts, and ambiguities that are {removed, self-resolved, forwarded, and transformed} in a
requirements model.

In order to save space, Hypothesis H2 is parameterized, which is indicated by the parentheses. That is,
it subsumes four similar hypotheses. The first hypothesis concerns removed defects, the second self-
resolved defects, the third forwarded defects, and the fourth transformed defects.
Subjects. The empirical study was performed at the University of Kaiserslautern (UKL) and the
Technical University of Munich (TUM). 10 students from UKL and 9 students from TUM participated
in the empirical study. All students were enrolled in a joint seminar. The students were from the third
year and above and had knowledge of the principles underlying the RSLs such as finite state machines
and object-orientation, but no experience with the particular languages or CASE tools. The students
worked together in teams of 2 or 3 students.
Design. The RSLs were examined in a replicated project scope according to Basili’s classification of
experimental scopes [BSH86]. This means that each team performed the same task, the development
of a requirements model based on a set of informal requirements, but using a different RSL. Six teams
were formed such that there is a one-to-one relation between team and RSL. This design was a com-
promise, because the effort per person and week is required to be low for a seminar (4 hours). Ideally,
each team should apply each RSL. However, the required resources were not available.

Teams were formed according the students' preferences. We decided to assign teams non-randomly to
RSLs, because of the distributed nature of the seminar. The UKL students had a choice between only
OCTOPUS, SCR, Statecharts, and UML, and the TUM students had a choice between only ROOM,
SDL, and Focus. This restriction was due to the location of supervisors experienced with these RSLs.
Instrumentation. The teams received an informal requirements document about 9 pages, which was
written by the authors of this paper. This document described a consumer electronics product, the
Tamagotchi toy, which is an event-driven system (note that all selected RSLs are well-suited for
specifying event-driven systems). The requirements document had two parts, a problem description of
4 pages that defines the background of a fictional software development project, and the customer
requirements of 5 pages that describe the desired behavior of the Tamagotchi toy. The customer
requirements consist of 42 textual requirements; each requirement has on average 2 or 3 sentences.
Some requirements were derived from a book describing the Tamagotchi [Ban97], others were reverse
engineered from the original toy, and some were invented.
The requirements document contained 57 defects; 38 ambiguities, 13 incompletenesses, and 6
conflicts. Our experience with previous empirical studies in RE has shown that is not practical to seed
defects in a requirements document after it was written. Defects in requirements documents are so

6

diverse that “invented” defects could only cover a small portion of the defects actually occurring in
practice. Furthermore, a requirements document written in natural language always contains some
redundancy. This does not mean necessarily that requirements are mentioned twice, but also that
contextual information is given, which backs up the requirements. To introduce a defect
“consistently”, these redundant parts need to be changed as well. Doing this change consistently and
uniformly has proven not feasible.
We seeded defects during the creation of the requirements. Thereby, we relied on the observation that
the first versions of a requirements document contain lots of defects even if they are written carefully.
This observation was made by Martin and Tsai who found in a well-written 16 page requirements
document 92 defects [MT90]. Our experience from a previous empirical study confirms this
observation [KKR+98]. We have identified the defects through an intensive review and through the
questions raised by the students.
Data Collection. Data collection was performed in several ways. The teams were required to write a
brief report about each issue they encountered in the informal requirements. A solution to the issue
was sent in reply by the author of the requirements document. This solution was not sent to the other
teams.
At the end of the seminar, we interviewed each team about its requirements model using the list of 57
known defects in the informal requirements. For each defect, it was checked whether the defect has
been removed, forwarded, transformed, or is out of the scope of requirements model.
Preparation. The preparation phase took 4 weeks. During this phase, the students read material about
their RSL and produced a tiny requirements model of the ESFAS (Engineered Safety Feature
Actuation System) [CP93]. Then, each team wrote a 1-to-2-page essay about the RSL. At the end of
this phase, the students had an opportunity to discuss all the problems they encountered with the RSL
or CASE tool with their supervisor. The outcome of this phase was the requirements model and the
essay. Based on these two deliverables, the supervisor got an impression of the students’ current
understanding of the treatment. In the case a team’s understanding was poor, the supervisor could
discuss the problems with the team. However, this case actually did not occur.
Execution. The execution phase took 8 weeks and comprises the development of a requirements
model of the Tamagotchi toy. All issues and defects that were detected during the formalization of
informal requirements were reported to the supervisor. The questions were forwarded to and answered
by the author of the requirements document, i.e., the customer, in such a way that if two teams
encountered the same issue or defect, they received the same answer. A team spent 100 hours
minimum on the development of the requirements model.

Data Validation. Several activities were performed to validate the data. First, the validity of the
reported issues was checked by the author of the requirements document. There were cases in which
the description of an issue that was submitted by a team was not clear. In such a case, the issue was
clarified in a discussion between the author and the team.
Second, the validity of the data collected regarding removed, forwarded, and transformed defects were
checked by simulation and inspection of the requirements models. During the interviews in which the
data were collected, each team was asked to show certain behaviors of the requirements model by
using the CASE tool’s simulation feature. After the course was over, further validation was performed
by inspection of the requirements models as part of a diploma thesis.

6. RESULTS
The study could not be performed as planned. Due to different university holidays at TUM, the
schedule for the execution phase was tighter at TUM than at UKL. Thus, the TUM teams did not have
enough time for writing defect reports and waiting for answers. Effectively, this means that the
processes at UKL and TUM differed in customer participation. At UKL, the customer was involved
from the beginning of the formalization process. At TUM, the customer was involved only at the end
of the formalization process, when the final requirements models were evaluated by an interview with
the team. This deviation from the plan described in the previous chapter allows investigating a third
hypothesis regarding the impact of customer participation on the detection of defects.

7

On the other hand, the deviation from the plan makes it necessary that we block the whole analysis of
this study with respect to the site (UKL, TUM). It is necessary to separate the analysis of the UKL
teams from the analysis of the TUM teams, because the differing customer participation has an effect
on the results. The fact that customer and user participation can influence the RE process was shown
by El Emam et al. in an empirical study [EQM96].
We tested the hypothesis H1 by a Chi-Square test, which allows testing whether a set of observed
frequencies departs significantly from a set of theoretical frequencies. We demanded a significance
level α=0.05, which is most common in software engineering experiments. Concretely, we tested
whether the reported numbers of ambiguities, incompletenesses, and conflicts depart significantly
from the expected numbers of those defects.
Based on the numbers of known defects in the requirements document (38 ambiguities, 13
incompletenesses, and 6 conflicts), the theoretical probabilities of detecting an ambiguity,
incompleteness, and conflict were 0.67 (38 ambiguities divided by 57 defects in total), 0.23, and 0.1,
respectively. The expected number of defects of a particular type fe(j) was calculated fe(j) = n * pj, where
n is the total number of reported defects and pj, is the probability of detecting a defect of type j. For
example, if a team reports 20 defects, we would expect 13.4 ambiguities (20 reported defects * 0.67
probability of detecting an ambiguity).
We tested the hypotheses H2 in the same way.
Table 1 summarizes the observed (“O”) and the expected (“E”) numbers of reported, removed, self-
resolved, forwarded, and transformed defects for each team and the results the Chi-square tests. A
precondition of this test is that the expected frequencies are not below 5. Because most expected
frequencies are below 5, we test the hypotheses H1 and H2 on the aggregated data of the UKL and of
the TUM teams, respectively. We used the procedures described in [FT89] to aggregate data.

Reported Removed Self-resolved Forwarded Transformed RSL Site

O
bs

er
ve

d
/ E

xp
.

In
co

m
pl

et
e.

C
on

fli
ct

s

A
m

bi
gu

iti
es

In
co

m
pl

et
e.

C
on

fli
ct

s

A
m

bi
gu

iti
es

In
co

m
pl

et
e.

C
on

fli
ct

s

A
m

bi
gu

iti
es

In
co

m
pl

et
e.

C
on

fli
ct

s

A
m

bi
gu

iti
es

In
co

m
pl

et
e.

C
on

fli
ct

s

A
m

bi
gu

iti
es

O 8 2 8 10 4 27 1 2 20 2 2 3 1 0 8 SCR UKL
E 4 2 12 9 4 26 5 3 15 1 1 5 2 1 6
O 6 2 5 9 3 27 3 1 23 4 3 4 0 0 7 Statecharts UKL
E 3 1 9 9 4 26 6 3 18 3 1 7 2 1 4
O 4 2 3 - - - - - - - - - - - - OCTOPUS UKL
E 2 1 6 - - - - - - - - - - - -
O 2 1 5 9 3 28 7 2 23 2 2 3 2 1 7 UML UKL
E 2 1 5 9 4 27 7 3 22 1 1 5 2 1 7

Chi-square
(p-level)

UKL .009985 .997092 .037973
(no UML)

.004681 .021563
(no UML)

O - - - 9 2 19 - - - 2 3 3 2 1 16 ROOM TUM
E - - - 7 3 20 - - - 2 1 5 4 2 13
O - - - 8 3 23 - - - 3 3 3 2 0 12 SDL TUM
E - - - 8 4 22 - - - 2 1 6 3 2 9
O - - - 5 2 21 - - - 7 4 3 1 0 14 Focus TUM
E - - - 6 3 19 - - - 3 2 9 3 2 10

Chi-square
(p-level)

TUM - .959297 - .000009 .023047

Table 1. Collected Data and Results of Chi-Square Tests
As Table 1 shows, there were differences in the absolute numbers of incompletenesses, conflicts, and
ambiguities that were reported, removed, and so on. For example, the SCR team reported 8
incompletenesses, 2 conflicts, and 8 ambiguities, while the OCTOPUS team reported only 4
incompletenesses, 2 conflicts, and 3 ambiguities. Because of the similarity of the applied RSLs and
based on our personal judgement of the capabilities of the teams, we believe that these differences
cannot be attributed to the RSLs. On the other hand, the single team results show a consistent profile

8

of incompletenesses, conflicts, and ambiguities that were reported, removed, and so on, except for the
UML team. For example, each of the SCR, Statecharts and OCTOPUS teams reported more
incompletenesses and fewer ambiguities than one would expect based on the total numbers of these
defects in the requirements document. However, the UML team behaved differently from the other
UKL teams. The UML team reported a number of defects quite close to the expected number. This
team said in the final interview that they did not report every issue they became aware of, but only the
ones that they believed they could not solve themselves. Because of this lack of conformance with the
experimental process, we treated the UML team as an outlier in two tests. The OCTOPUS
requirements model was not very detailed. Therefore, it is omitted from further analysis.

The results of the statistical tests are discussed in the remainder of this section. We do not discuss
conflicts in detail, because their numbers are too low.

H1—Reported Defects
We can reject the null hypotheses H01 for the numbers of reported incompletenesses, ambiguities, and
conflicts, as Table 1 shows. The observed numbers differ significantly from the expected ones. The
application of a RSL leads to higher numbers of detected incompletenesses and conflicts and lower
numbers of detected ambiguities, as one would expect based on the defect numbers in the document. A
UKL team reported on average 14% of the known ambiguities, but 39% of the known
incompletenesses. This result is noticeable. It shows that ambiguities are not detected just because the
informal requirements are formalized. If the requirements engineer is not aware of an ambiguity while
developing a requirements model, then a RSL does not help to detect the ambiguity. On the other
hand, a RSL seems to help detect incompletenesses and conflicts, because they were reported more
frequently than expected.
H2—Removed Defects
We cannot reject the null hypotheses H02 for the numbers of removed incompletenesses, ambiguities,
and conflicts both at UKL and TUM, as Table 1 shows. When a RSL is applied, there is no difference
between the numbers of removed incompletenesses, conflicts, and ambiguities and what one would
expect based on the defect numbers in the document. 72% ambiguities and incompletenesses were
removed on average by a UKL team. 56% ambiguities and incompletenesses were removed on
average by a TUM team.
H2—Self-resolved Defects
We can reject the null hypothesis H02 for the numbers of self-resolved incompletenesses, ambiguities,
and conflicts at UKL, as Table 1 shows. There is a significant difference between the numbers of
defects that are self-resolved and their expected numbers. On average, a UKL team (except for the
UML team) resolved 57% of the known ambiguities, but it resolved only 16% of the known
incompletenesses without asking the customer. During the final interviews it became apparent that the
teams often did not recognized ambiguities as such. Therefore, we conclude that ambiguities are more
often unconsciously removed than are other types of defects. Unconscious disambiguation is a serious
problem, because implicit assumptions are more likely than in our study to be wrong when the system
is more complex.
H2—Forwarded Defects
We can reject the null hypotheses H02 for the numbers of forwarded incompletenesses, ambiguities,
and conflicts both at UKL and TUM, as Table 1 shows. The observed numbers differ significantly
from the expected ones. In accordance with our expectation, the application of an RSL leads to higher
numbers of forwarded incompletenesses and conflicts and to a lower number of forwarded
ambiguities, as one would expect based on the defect numbers in the document. On average, a UKL
team forwarded only 9% of the known ambiguities, but it forwarded 21% of the known
incompletenesses. In the case of the TUM teams, this difference is even bigger. On average, a TUM
team forwarded only 8% of the known ambiguities, but it forwarded 31% of the known
incompletenesses. This result confirms that the applied RSLs significantly reduce the level of
ambiguity, however, they do not eliminate ambiguity.

9

H2—Transformed Defects
We can reject the null hypotheses H02 for the numbers of transformed incompletenesses, ambiguities,
and conflicts at UKL and at TUM, as Table 1 shows. The observed numbers differ significantly from
the expected ones. The application of a RSL leads to more transformed ambiguities and fewer
transformed incompletenesses than one would expect based on the defect numbers in the document.
On average, a UKL team (except for the UML team) transformed 20% of the known ambiguities, but
it transformed only 4% of the known incompletenesses. Again, the difference is bigger for the TUM
teams. On average, a TUM team transformed 37% of the known ambiguities, but it transformed only
13% of the known incompletenesses.
If not detected and not removed, incompletenesses and conflicts tend to become forwarded, while
ambiguities tend to become transformed (i.e., misinterpreted). This behavior of ambiguities is a
problem, since such a misinterpretation can slip through undetected, because of the customers'
reluctance to read requirements written in artificial language. Simulation, the other way of validating
formal requirements, can show only the presence of misinterpretations but not their absence.
Disastrous software failures may be the consequence.
H3—Customer Participation
There was a difference in the customer participation between the sites UKL and TUM. At UKL, the
customer was involved from the beginning of the formalization process. At TUM, the customer was
involved only at the end of the formalization process, when the final requirements model was
evaluated by an interview with the team. This deviation of the actual course of the empirical study
from the plan allows us to investigate a third hypothesis regarding ambiguities. We do not analyze
incompletenesses in this respect, because the investigated requirements document contained mainly
incompletenesses that could be resolved by reasoning. UKL and TUM students were equal good in
reasoning. Thus, there were no significant differences in the numbers of removed incompletenesses
between UKL and TUM teams.
We expect a significant difference between UKL and TUM in the numbers of removed and
transformed ambiguities. Humans are naturally skilled in resolving ambiguity. Thus, the ambiguities
that were reported at UKL are those that need clarification. If there is no customer participation, as in
the case of TUM, the likeliness of misinterpretations raises.
H3: There is a difference between the UKL and TUM teams in the numbers of removed and

transformed ambiguities.
Table 2 shows the average numbers of reported, forwarded, and transformed ambiguities for UKL and
TUM teams and the results of a Mann-Whitney U test (nonparametric variant of t test [FT89]).

 Removed Ambiguities Forwarded Ambiguities Transformed Ambiguities

UKL 27.3 3.3 7.3

TUM 21.0 3.0 14.0

p-value 0.49543 .512695 0.49543

Table 2. Effect of Customer Participation
We can reject the null hypothesis H03. There is a significant difference between the numbers of
removed ambiguities at UKL and TUM. The UKL teams removed 72% of the known ambiguities,
while the TUM teams removed only 55%. Consequently, there is also a significant difference between
the number of transformed ambiguities at UKL and TUM. The TUM teams resolved twice as many
ambiguities, 37%, the wrong way as did the UKL teams. The fact that there are no significant
differences between UKL and TUM in the numbers of forwarded ambiguities shows the homogeneity
of the two groups. Recall that a forwarded defect is a defect that was not observed. Therefore, the
customer participation should not have an effect on the numbers of forwarded ambiguities.
We have analyzed the single ambiguities that were removed by the two groups. Interestingly, each
ambiguity that was reported and removed by an UKL team was also recognized and removed by a
TUM team. That is, there were no ambiguities that could not be resolved without help. The difference

10

lies in the frequency; more UKL teams were able to remove an ambiguity, because they had access to
the customer, than did the TUM teams. This observation confirms a key characteristic of ambiguity.
Ambiguity, if it is noticed, needs immediate clarification. Any ambiguity that is removed by one team
without a report, can be misinterpreted unconsciously by another team, and can raise a question for a
third team. If this question is not answered, the number of transformed ambiguities grows.

7. THREATS TO VALIDITY
The following possible threats to the validity of this study have been identified:

• The one-to-one mapping between team and RSL makes it difficult to prove that the observed
differences between the UKL and TUM teams are really caused by the different customer
participation (see hypothesis H3). It could be the case that the differences are caused by inherent
differences among the RSLs, i.e., between SCR, Statecharts, and UML on one hand and ROOM,
SDL, and Focus on the other hand. However, as mentioned previously, all RSLs are based on
finite state machines. Therefore, the second explanation is unlikely. Note that the results regarding
H1 and H2 are not affected by this problem, because we did not test for differences among the
RSLs.

• It was possible for the teams to exchange information. However, we told the teams not to do so
and there was no exam at the end, thus, cheating made little sense. Since each team applied a
different RSL, it was not possible for a team to copy the requirements model of another team in
order to save effort.

• The requirements document might not be representative in terms of size, complexity, and numbers
of defects. The Tamagotchi system already exists, therefore, the requirements were well-
understood and the requirements document might expose a different defect profile compared to
one describing a completely new system. However, we strongly believe that our results can be
generalized to other requirements documents, as far as ambiguities and incompletenesses are
concerned. The number of conflicts in the Tamagotchi requirements document is too low to draw
significant conclusions on them.

• The results regarding incompletenesses are valid only for incompletenesses that can be detected
without domain knowledge.

• The RE process that we followed in this case study assumes a relatively complete and detailed
requirements document, before a RSL is used. However, if requirements models are created, they
are usually created from a sketchy requirements document, in order to avoid describing things
twice. The RE process that we followed is typical for safety-related domains such as the aerospace
domain.

• The subjects who participated in the case study are unlikely to be representative of professional
requirements engineers. Therefore, we cannot generalize the results to that population. However,
this replicated project type of study could not be done in industry because of the high cost. We
believe that student experiments are useful as a pilot for later industrial experiments. For example,
we can test hypotheses in a student setting in order to decide whether it is worth investigating
them further in industrial settings.

8. CONCLUSIONS
This paper presented the results of an empirical study with RSLs. The participants applied RSLs to
develop an executable requirements model from a given set of informal requirements whose defects
were known to the experimenters. The students were told to report every defect they encountered in
the informal requirements during formalization. We analyzed the reported issues, and we analyzed the
requirements models based on what happened to those defects in the informal requirements that
slipped through undetected. The results of our study are: (1) ambiguities are less frequently reported
than other types of defects; (2) ambiguities are removed more often unconsciously, i.e., are correctly
resolved without being reported, than other types of defects; (3) ambiguities are misinterpreted more
often than other types of defects; and (4) ambiguities, if noticed, require immediate clarification.

11

The lesson learned from this empirical study is that conflicts and certain types of incompletenesses can
be easily detected through formalization and automated checking of the resulting requirements
models. However, requirements engineers should not rely on the formalization of informal
requirements helping to spot ambiguities in informal requirements; only some ambiguities are
detected. Moreover, ambiguities tend to become misinterpreted if they are not recognized and if they
are not unconsciously self-resolved.
Based on these results, we make two recommendations for the use of RSLs in RE processes:
1. Inspection of informal requirements before their formalization. Since RSLs enforce precision,

an ambiguity can become an unambiguously wrong formal requirement, which can slip through
undetected, because of the customers' reluctance to read requirements written in artificial language
and theoretical limitations of simulation. We recommend the inspection of informal requirements
for ambiguities to avoid these problems. An inspection technique for spotting ambiguities is
introduced in [Kam01].

2. Participation of customers and users during formalization. The development of requirements
models from informal requirements is a task of requirements engineers, not customers or users.
Nevertheless, we recommend participation of customers and users during the development of
these models, not afterwards, in order clarify observed ambiguities as soon as possible. Spotted
ambiguities that cannot be clarified immediately with the customer tend to become misinterpreted.
If those misinterpretations are clarified later, costly rework of models may be required.

The phenomenon of ambiguity was investigated empirically only in psycho-linguistics. We would like
to encourage researchers to perform empirical research in requirements engineering to further
investigate the impacts of ambiguity during formalization of requirements. Requirements specification
languages are unambiguous, but customer requirements are usually stated in natural language first.

ACKNOWLEDGEMENTS
We would like to thank Martin Glinz for his comments on the design of this study and we thank Dan
Berry and Barbara Paech for their comments on previous versions of this paper. Moreover, we thank
the students from the University of Kaiserslautern and the Technical University of Munich for their
willingness to participate in this experiment. Finally, we gratefully acknowledge the constructive and
detailed comments of the anonymous referees on the previous version of this paper.

REFERENCES
[ABL96] J.-R. Abrial, E. Börger, and H. Langmaack (Eds.). Formal Methods for Industrial Applications:

Specifying and Programming the Steam Boiler Control. Lecture Notes in Computer Science 1165.
Springer, 1996.

[ACJ+96] M.A. Ardis, J.A. Chaves, L.J. Jagadeesan, P. Mataga, C. Puchol, M.G. Staskauskas, and J.von
Olnhausen. A framework for evaluating specification methods for reactive systems: Experience
report. IEEE Transactions on Software Engineering, 22(6):378-389, June 1996.

[AKZ96] Maher Awad, Juha Kuusela, and Jurgen Ziegler. Object-Oriented Technology for Real-Time Systems:
A Practical Approach Using OMT and Fusion. Prentice Hall, 1996.

[BAB+98] A.T. Bahill, M. Alford, K. Bharathan et al. The Design Methods Comparison Project. IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 28(1): 80-103,
1998.

[Ban97] Bandai. Das Original Tamagotchi Buch. Tamagotchi & Bandai, 1997.
[BSH86] V.R. Basili, R.W. Selby, and D.H. Hutchens. Experimentation in software engineering. IEEE

Transactions on Software Engineering, SE-12(7):733–743, July 1986.
[CP93] P.-J. Courtois and D.L. Parnas. Documentation for safety critical software. In Proceedings of the 15th

International Conference on Software Engineering, pages 315–323, Baltimore, Maryland, USA, May
1993. IEEE Computer Society Press.

[EC97] S. Easterbrook and J. Callahan. Formal methods for V&V of partial specifications: An experience
report. In Proceedings of the 3rd IEEE International Symposium on Requirements Engineering, pages
160–168, Annapolis, Maryland, USA, January 1997.

12

[EQM96] K. El Elmam, S. Quintin, and N.H. Madhavji. User participation in the requirements engineering
process: An empirical study. Requirements Engineering Journal, 1(1):4–26, 1996.

[FFFL97] M.S. Feather, S. Fickas, A. Finkelstein, and A. van Lamsweerde. Requirements and specification
exemplars. Automated Software Engineering, 4(4):419–438, October 1997.

[FT89] G.A. Ferguson and Y. Takane. Statistical Analysis in Psychology and Education. McGraw-Hill, 1989.
[Har87] D. Harel. Startecharts: A visual formalism for complex systems. Science of Computer Programming,

8:231–274, 1987.
[HBGL95] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw. SCR*: A toolset for specifying and analyzing

requirements. In Proceedings of the 10th Annual Conf. on Computer Assurance, pages 109–122,
Gaithersburg, MD, USA, June 1995.

[Hen80] K.L. Heninger. Specifying software requirements for complex systems: New techniques and their
application. IEEE Transactions on Software Engineering, SE-6(1):2–13, January 1980.

[HJL96] C.L. Heitmeyer, R.D. Jeffords, and B.G. Labaw. Automated consistency checking of requirements
specifications. ACM Transactions on Software Engineering and Methodology, 5(3):231–261, July
1996.

[HLN+90] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Trauring, and M.
Trakhtenbrot. STATEMATE: A working environment for the development of complex reactive sys-
tems. IEEE Transactions on Software Engineering, 16(4):403–414, April 1990.

[HMR+98] F. Huber, S. Molterer, A. Rausch, B. Schätz, M. Sihling, and O. Slotosch. Tool supported
specification and simulation of distributed systems. In B. Krämer, N. Uchihira, P. Croll, and S. Russo,
editors, Proceedings International Symposium on Software Engineering for Parallel and Distributed
Systems, pages 155–164, 1998.

[ITU93] Recommendation Z.100, Specification and Description Language (SDL). ITU, 1993.
[Jon90] C. B. Jones. Systematic Software Development Using VDM. Prentice Hall, New Jersey, USA, 1990.
[Kah74] G. Kahn. The Semantics of a Simple Language for Parallel Programming. Information Processing,

74:471–475, 1974.
[Kam01] E. Kamsties, Surfacing Ambiguity in Natural Language Requirements, PhD Thesis, Univ. of

Kaiserslautern, 2001.
[KKR+98] A. von Knethen, E. Kamsties, R. Reussner, C. Bunse, and B. Shen. A comparative case study with

industrial requirements engineering methods. In Proceedings of the 11th International Conference on
Software Engineering an its Applications, Paris, France, December 8–10 1998. Vol.3: Preprints.

[LL94] C. Lewerenz and T. Lindner (Eds.). Case study "production cell". FZI-Publication 1/94,
Forschungszentrum Informatik, Universitaet Karlsruhe, Germany, 1994.

[MT90] J. Martin and W. T. Tsai. N-fold inspection: A requirements analysis technique. Communications of
the ACM, 33(2):225–232, February 1990.

[SGW94] B. Selic, G. Gullekson, and P.T. Ward. Real–Time Object–Oriented Modeling. Wiley, 1994.
[Spi92] J. M. Spivey. The Z Notation – A Reference Manual. Prentice-Hall, 1992.
[SS97] I. Sommerville and P. Sawyer. Requirements Engineering – A good practice guide. Wiley, 1997.
[UML99] OMG Unified Modeling Language. Technical report, Rational Software Corporation, June 1999.

Version 1.3.
[WGW97] Y. Wand, A. Gemino, and C. Woo. An Empirical Comparison of Object Oriented and Data Flow

Modeling. Proceeding of the CAiSE/IFIP 8.1 International Workshop on Evaluation of Modeling
Methods in Systems Analysis and Design (EMMSAD’97), Barcelona, Spain, June, 1997.

[Win88] J.M. Wing. A study of 12 specifications of the library problem. IEEE Software, pages 66–76, July
1988.

[Win90] J.M. Wing. A specifier’s introduction to formal methods. IEEE Computer, 23(9):8–24, September
1990.

