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Abstract 
It is a frequently reported effect of applying requirements specification languages that the 
formalization of informal requirements leads to the detection of defects such as 
omissions, conflicts, and ambiguities. However, there is little quantitative data available 
on this effect. 

This paper presents an empirical study with requirements specification languages, which 
addresses two research questions. First, which types of defects are detected by a 
requirements engineer during the development of a requirements model, and second, 
what happen to those defects that are not detected?  

The results indicate that ambiguities require special care during formalization, because 
they are less frequently reported than other types of defects. Instead, ambiguities tend to 
become often disambiguated unconsciously, which is a serious problem, because implicit 
assumptions are more likely than in our study to be wrong when the system is more 
complex. Moreover, ambiguities are misinterpreted more often than other types of 
defects. Finally, ambiguities, if noticed, require immediate clarification.  

1. INTRODUCTION 
The use of a requirements specification language (RSL) in requirements engineering (RE) has many-
fold benefits. Precise requirements models allow for better communication among various 
stakeholders, checks of completeness and consistency and proofs of safety properties can be 
automated, and the dynamic behavior of the requirements models can be simulated. Furthermore, they 
make the RE process more repeatable than if ad hoc techniques were be applied. According to 
Sommerville and Sawyer [SS97], RSLs are a “vehicle for the analyst to add clarity to the fuzzy picture 
provided by the stakeholder requirements, domain constraints.... They are concerned with imposing a 
structure on the vague notation of a system”. It is this characteristic that leads to a frequently reported 
side-effect of the application of RSLs: defects in the initial requirements are detected during the 
development of requirements models [e.g., Win90, SS97, EC97]. 

We subsume under the term requirements specification languages requirements modeling languages 
and formal methods for describing requirements. A requirements modeling language offers a 
graphical language with a formal syntax, that is, a set of diagram elements, and a semi-formal 
semantics, which is typically stated in natural language. Examples of requirements modeling 
languages include the Unified Modeling Language (UML) [UML99]. A formal method offers a 
language with a formal syntax and formal semantics. In most cases, this language is mathematical, but 
also graphical and tabular languages have been proposed. A formal method allows describing 
requirements rigorously and allows analyzing them extensively. Examples of formal methods include 
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SCR [HJL96], SDL [ITU93], VDM [Jon90], and Z [Spi92]. A requirements model is a set of 
requirements that is represented using a RSL. It is a formalized statement of requirements. 

This paper reports on an empirical study aimed at answering two research questions about the defects 
spotted in informal requirements during formalization. A defect is a product anomaly in a 
requirements, design, or code document that leads to a misbehavior of a software system. We focus on 
conflicts, incompletenesses, and ambiguities in requirements documents. We address the following 
questions: Are there differences in the numbers of conflicts, incompletenesses, and ambiguities  

 - that are found during creation of a requirements model? 
 - that are not found and, thus, are contained in the final requirements model? 

We expected differences, because a RSL forces the requirements engineer to be precise, that is, to 
resolve ambiguities before creating a requirements model. Thus, ambiguities become unambiguously 
right or wrong statements in a requirements model. Only a few types of ambiguities become conflicts, 
which are detected by the consistency checker of a CASE tool. On the other hand, a requirements 
model can be inconsistent or incomplete. Incompletenesses and, in particular, conflicts can violate 
syntactic or semantic rules of a RSL and then are detected by a CASE tool.  

Seventeen graduate students from the University of Kaiserslautern and the Technical University of 
Munich participated in the study. The task was to develop a requirements model of a consumer 
electronics product, namely the Tamagotchi toy [Ban97]. The most popular RSLs, e.g., UML, SDL, as 
well as research prototypes, e.g., FOCUS [HMR+98], were used together with CASE tools.  

This paper is structured as follows. First, the applied RSLs are briefly described. Second, the previous 
empirical research is reviewed. Then, the evaluation framework is discussed and the design of the 
study. Finally, the results are presented, threats to validity are discussed, and conclusions are drawn. 

2. REQUIREMENTS SPECIFICATION LANGUAGES 
The objects of the study were seven RSLs, namely Focus, SCR, SDL, OCTOPUS, ROOM, Statemate, 
and UML. The selection of these languages was driven by the availability of CASE tools, availability 
of experts for supervising the subjects, and practical relevance of languages. Furthermore, the 
languages should represent a good balance between emerging object-oriented RSLs, and traditional 
structural RSLs. The RSLs and the used CASE tools are described briefly in the following. 

Focus is a formal method for modeling distributed systems. Its semantics is based on stream 
processing functions [Kah74]. AutoFocus is a prototype CASE tool developed by the Technical 
University of Munich, which implements the semantics of Focus [HMR+98].  

The SCR (Software Cost Reduction) requirements specification language was developed by the Naval 
Research Laboratory (NRL) of the US Navy in 1978 [Hen80]. Recently, the NRL presented a formal 
semantics of SCR [HJL96] and developed a CASE tool called SCR* [HBGL95].  

SDL (Specification and Description Language) is standardized by the International Tele-
communication Union. It was developed in the late 1960s. Object-oriented concepts have been 
introduced into the version SDL 92 [ITU93]. SDL is considered today a formal description technique. 
We used the CASE tool ObjectGEODE from Verilog. 

OCTOPUS [AKZ96] was developed in 1996 by Nokia. It is an object-oriented method based on OMT 
[RBP+91] and Fusion [Col94] for all phases of the development of embedded systems. There is no 
CASE tool for OCTOPUS, however, Awad et al. recommend among others Software through 
Pictures/OMT (StP) from Aonix, which was applied in the case study. 

ROOM (Real-time Object-Oriented Modeling) is an object-oriented method for developing distributed 
systems created by Bell Northern Research, Ltd. in 1994 [SGW94]. We used the CASE tool 
ObjecTime Developer from ObjecTime Systems.  

Statecharts are a state machine based description technique developed by David Harel [Har87]. The 
CASE tool Statemate MAGNUM from I-Logix extends the behavioral statecharts view with a 
structural and a functional view [HLN+90]. 
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The Unified Modeling Language (UML) was presented by Booch, Rumbaugh, and Jacobson in 1997, 
the applied version was 1.3 [UML99]. The CASE tool Rhapsody by I-Logix was used, which allows 
generating executable code from a subset of UML diagrams.  

All employed CASE tools, except StP/OMT, offer simulation of requirements models or full code 
generation. That is, there is some sort of formal semantics behind every RSL, except OCTOPUS. 

3. PREVIOUS EMPIRICAL RESEARCH 
Studies with RSLs have a long tradition at the International Workshop on Software Specification and 
Design (IWSSD) since the mid-80s and at the International Workshop on Evaluation of Modeling 
Methods in Systems Analysis and Design (EMMSAD) since the mid-90s.  

There is an increasing number of empirical studies concerned with RSLs, e.g., Lewerenz and Lindner 
[LL94]; Ardis et.al. [ACJ+96]; Abrial, Boerger, and Langmaack [ABL96]; Bahill, Alford, Bharathan 
et.al [BAB+98], and the whole EMMSAD proceedings are devoted on this topic. However, there is a 
lack of commonly accepted criteria for method comparison [WGW97].  

Finkelstein et.al suggested that empirical studies on RSLs should focus on processes rather than 
products, i.e., they should focus on causes rather than symptoms of strength and weaknesses of RSLs 
[FFFL97]. One process aspect is the previously mentioned side-effect of RSLs to help spot defects 
during formalization of informal requirements.  

This side-effect was studied to our knowledge only by Wing post-mortem in specifications written for 
the fourth IWSSD workshop  [Win88]. Wing made two conclusions. First, RSLs do not radically 
differ from one another in this respect. Second, the RSLs can be used to identify many, but not all, 
deficiencies in a set of informally stated requirements. Wing does not provide quantitative data.   

4. EVALUATION FRAMEWORK 
We extended the evaluation framework of Wing. We propose to track (1) the number of defects 
revealed in informal requirements during creation of a requirements model and (2) the number of 
defects that slip into the requirements model. Figure 1 shows all paths that a defect in the informal 
requirements can take. First, a specifier may observe a defect during formalization and report it to the 
customer.  Then, he or she receives a solution to the defect. Thus, such a defect is removed in the 
requirements model. We assume that a specifier does not introduce a defect into the requirements 
model after knowing the solution, but it is possible. Defects that are removed in the requirements 
model because they were reported during formalization are called customer-resolved defects. Second, 
a specifier does not report a defect, because, e.g., he or she does not recognize it. Nevertheless, such a 
defect can be removed by chance. Defects that are removed in the requirements model but which were 
not reported during formalization are called self-resolved defects. Third, a defect that was not reported 
residues in the requirement document. Residual defects are further distinguished into forwarded and 
transformed defects. Some defects in the informal requirements are neither removed nor residual in the 
requirements model, because they are outside the scope of the requirements model. Therefore, the set 
of reported defects is not necessarily equal to the set of customer-resolved defects.  

Figure 1. Classification of Defects 
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In the following, we explain the defect classes that are of particular interest in our study in more detail: 

• Reported Defect. Precisely speaking, a defect was recognized by a specifier and was reported to 
the experimenters while reading an informal requirement or while formalizing an informal 
requirement. These two activities usually are intertwined and we made no attempt to distinguish 
them. 

• Removed Defect. The requirements model is incorrect with respect to the informal requirements, 
but correct with respect to the customer’s expectations.  

• Self-resolved Defect. The defect has been removed, but it has not been reported, e.g., it has been 
removed by the requirements engineer using his or her background knowledge. 

• Forwarded Defect. The same defect of the informal requirements is included in requirements 
model. The requirements model is correct with respect to the informal requirements, but incorrect 
with respect to the customer’s expectations. For instance, an incomplete informal requirement has 
not been recognized and has become an incomplete statement in the requirements model. 

• Transformed Defect. A defect in the informal requirements has been transformed into another type 
of defect in the requirements model. The requirements model is incorrect with respect to the 
informal requirements as well as with respect to the customer’s expectations. For instance, an 
ambiguous requirement has been misinterpreted and has become an incorrect statement in the 
requirements model.  

• Defect out of scope. The requirements model is incomplete with respect to the informal 
requirements as well as with respect to the customer’s expectations. For example, if a defect is 
concerned with a timing requirement, and timing requirements cannot be specified with the 
applied RSL, e.g., because of lack of notational power of the RSL, then the defect is out of scope. 

 
Defects newly introduced into the requirements models were not investigated in this study, because 
the effort would have been too high to inspect the requirements models in detail. 
We limited the types of defects considered in the study to defects that can be identified without 
knowledge of the application domain, because we did not expect the subjects to have deep knowledge 
about the application domain. In particular, we were interested in incompletenesses (only those 
detectable without domain knowledge), conflicts, and ambiguities. For the same reason, we did not 
consider incorrect, unrealistic, or extraneous requirements.  

A requirements document is incomplete if information is missing such as a function or a definition of a 
response to particular input data. A requirement is ambiguous if it has several interpretations. 
Ambiguities include not only linguistic ambiguities such as an uncertain pronoun reference, but also 
ambiguities about the actual system and its behavior [SMT92]. Two requirements are inconsistent if 
they state facts that cannot both be true, or if they express actions that cannot be carried out at the 
same time. This type of defect is also called conflict. Incompletenesses and ambiguities can be 
distinguished by the type of required correction activity. The former require adding information, while 
the latter just require rephrasing the present information so that a requirement unambiguously conveys 
its meaning. 

5. EXPERIMENTAL STUDY 
This section describes hypotheses, design, instruments, preparation, execution, and data validation. 

Hypotheses. The hypotheses followed the research questions, which are stated in the beginning of this 
paper. We assume that there are no significant differences between the investigated RSLs in spotting 
defects, because they all address behavioral requirements and provide some state-machine-based 
language to describe them. Rather, we expect differences between the defect types. A RSL forces the 
requirements engineer to be precise. However, we expect that a specifier does not necessarily 
recognize an ambiguity as such and misinterprets it, while the structure imposed by the RSL on the 
requirements helps detect inconsistencies and incompletenesses (recall that we limited the considered 
kinds of incompletenesses to those that are detectable without domain knowledge).  Therefore, we 
hypothesize that fewer ambiguities and more incompletenesses and conflicts are reported than one 
would expect based on the overall numbers of those defects in the requirements document. Our 
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alternative hypothesis is 
H1:  There is a difference between the observed and expected numbers of incompletenesses, 

conflicts, and ambiguities that are reported during formalization using a RSL. 
Following the above argumentation, we hypothesize that fewer ambiguities and more 
incompletenesses and conflicts are removed than one would expect based on the overall numbers of 
those defects in the requirements document, because ambiguities are less frequently recognized. 
Rather, one portion of the ambiguities that was not recognized is misinterpreted. Thus, we hypothesize 
that more ambiguities and fewer incompletenesses and conflicts are transformed than one would 
expect based on the overall numbers of those defects in the requirements document. The other portion 
of ambiguities that was not recognized is correctly interpreted with the help of other requirements and 
real-world knowledge.  Thus, we hypothesize that more ambiguities and fewer incompletenesses and 
conflicts are self-resolved than one would expect based on the overall numbers of those defects in the 
requirements document. Finally, we hypothesize that fewer ambiguities and more incompletenesses 
and conflicts are forwarded than one would expect based on the overall numbers of those defects in 
the requirements document. A requirements model can be inconsistent and incomplete to some degree, 
even if it is checked by a CASE tool. However, ambiguities must be removed or transformed, thus, we 
expected virtually no forwarded ambiguities in the requirements model. Our alternative hypotheses are 

H2:  There is a difference between the observed and expected numbers of incompletenesses, 
conflicts, and ambiguities that are {removed, self-resolved, forwarded, and transformed} in a 
requirements model. 

In order to save space, Hypothesis H2 is parameterized, which is indicated by the parentheses. That is, 
it subsumes four similar hypotheses. The first hypothesis concerns removed defects, the second self-
resolved defects, the third forwarded defects, and the fourth transformed defects. 
Subjects. The empirical study was performed at the University of Kaiserslautern (UKL) and the 
Technical University of Munich (TUM). 10 students from UKL and 9 students from TUM participated 
in the empirical study. All students were enrolled in a joint seminar. The students were from the third 
year and above and had knowledge of the principles underlying the RSLs such as finite state machines 
and object-orientation, but no experience with the particular languages or CASE tools. The students 
worked together in teams of 2 or 3 students. 
Design. The RSLs were examined in a replicated project scope according to Basili’s classification of 
experimental scopes [BSH86]. This means that each team performed the same task, the development 
of a requirements model based on a set of informal requirements, but using a different RSL. Six teams 
were formed such that there is a one-to-one relation between team and RSL. This design was a com-
promise, because the effort per person and week is required to be low for a seminar (4 hours). Ideally, 
each team should apply each RSL. However, the required resources were not available.  

Teams were formed according the students' preferences. We decided to assign teams non-randomly to 
RSLs, because of the distributed nature of the seminar. The UKL students had a choice between only 
OCTOPUS, SCR, Statecharts, and UML, and the TUM students had a choice between only ROOM, 
SDL, and Focus. This restriction was due to the location of supervisors experienced with these RSLs.  
Instrumentation. The teams received an informal requirements document about 9 pages, which was 
written by the authors of this paper. This document described a consumer electronics product, the 
Tamagotchi toy, which is an event-driven system (note that all selected RSLs are well-suited for 
specifying event-driven systems). The requirements document had two parts, a problem description of 
4 pages that defines the background of a fictional software development project, and the customer 
requirements of 5 pages that describe the desired behavior of the Tamagotchi toy. The customer 
requirements consist of 42 textual requirements; each requirement has on average 2 or 3 sentences. 
Some requirements were derived from a book describing the Tamagotchi [Ban97], others were reverse 
engineered from the original toy, and some were invented.  
The requirements document contained 57 defects; 38 ambiguities, 13 incompletenesses, and 6 
conflicts. Our experience with previous empirical studies in RE has shown that is not practical to seed 
defects in a requirements document after it was written. Defects in requirements documents are so 
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diverse that “invented” defects could only cover a small portion of the defects actually occurring in 
practice. Furthermore, a requirements document written in natural language always contains some 
redundancy. This does not mean necessarily that requirements are mentioned twice, but also that 
contextual information is given, which backs up the requirements. To introduce a defect 
“consistently”, these redundant parts need to be changed as well. Doing this change consistently and 
uniformly has proven not feasible. 
We seeded defects during the creation of the requirements. Thereby, we relied on the observation that 
the first versions of a requirements document contain lots of defects even if they are written carefully. 
This observation was made by Martin and Tsai who found in a well-written 16 page requirements 
document 92 defects [MT90]. Our experience from a previous empirical study confirms this 
observation [KKR+98]. We have identified the defects through an intensive review and through the 
questions raised by the students. 
Data Collection. Data collection was performed in several ways. The teams were required to write a 
brief report about each issue they encountered in the informal requirements. A solution to the issue 
was sent in reply by the author of the requirements document. This solution was not sent to the other 
teams.  
At the end of the seminar, we interviewed each team about its requirements model using the list of 57 
known defects in the informal requirements. For each defect, it was checked whether the defect has 
been removed, forwarded, transformed, or is out of the scope of requirements model.  
Preparation. The preparation phase took 4 weeks. During this phase, the students read material about 
their RSL and produced a tiny requirements model of the ESFAS (Engineered Safety Feature 
Actuation System) [CP93]. Then, each team wrote a 1-to-2-page essay about the RSL. At the end of 
this phase, the students had an opportunity to discuss all the problems they encountered with the RSL 
or CASE tool with their supervisor. The outcome of this phase was the requirements model and the 
essay. Based on these two deliverables, the supervisor got an impression of the students’ current 
understanding of the treatment. In the case a team’s understanding was poor, the supervisor could 
discuss the problems with the team. However, this case actually did not occur. 
Execution. The execution phase took 8 weeks and comprises the development of a requirements 
model of the Tamagotchi toy. All issues and defects that were detected during the formalization of 
informal requirements were reported to the supervisor. The questions were forwarded to and answered 
by the author of the requirements document, i.e., the customer, in such a way that if two teams 
encountered the same issue or defect, they received the same answer. A team spent 100 hours 
minimum on the development of the requirements model. 

Data Validation. Several activities were performed to validate the data. First, the validity of the 
reported issues was checked by the author of the requirements document. There were cases in which 
the description of an issue that was submitted by a team was not clear. In such a case, the issue was 
clarified in a discussion between the author and the team.  
Second, the validity of the data collected regarding removed, forwarded, and transformed defects were 
checked by simulation and inspection of the requirements models. During the interviews in which the 
data were collected, each team was asked to show certain behaviors of the requirements model by 
using the CASE tool’s simulation feature. After the course was over, further validation was performed 
by inspection of the requirements models as part of a diploma thesis. 

6. RESULTS 
The study could not be performed as planned. Due to different university holidays at TUM, the 
schedule for the execution phase was tighter at TUM than at UKL. Thus, the TUM teams did not have 
enough time for writing defect reports and waiting for answers. Effectively, this means that the 
processes at UKL and TUM differed in customer participation. At UKL, the customer was involved 
from the beginning of the formalization process. At TUM, the customer was involved only at the end 
of the formalization process, when the final requirements models were evaluated by an interview with 
the team. This deviation from the plan described in the previous chapter allows investigating a third 
hypothesis regarding the impact of customer participation on the detection of defects.   
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On the other hand, the deviation from the plan makes it necessary that we block the whole analysis of 
this study with respect to the site (UKL, TUM). It is necessary to separate the analysis of the UKL 
teams from the analysis of the TUM teams, because the differing customer participation has an effect 
on the results. The fact that customer and user participation can influence the RE process was shown 
by El Emam et al. in an empirical study [EQM96].  
We tested the hypothesis H1 by a Chi-Square test, which allows testing whether a set of observed 
frequencies departs significantly from a set of theoretical frequencies. We demanded a significance 
level α=0.05, which is most common in software engineering experiments. Concretely, we tested 
whether the reported numbers of ambiguities, incompletenesses, and conflicts depart significantly 
from the expected numbers of those defects.  
Based on the numbers of known defects in the requirements document (38 ambiguities, 13 
incompletenesses, and 6 conflicts), the theoretical probabilities of detecting an ambiguity, 
incompleteness, and conflict were 0.67 (38 ambiguities divided by 57 defects in total), 0.23, and 0.1, 
respectively. The expected number of defects of a particular type fe(j) was calculated fe(j) = n * pj, where 
n is the total number of reported defects and pj, is the probability of detecting a defect of type j. For 
example, if a team reports 20 defects, we would expect 13.4 ambiguities (20 reported defects * 0.67 
probability of detecting an ambiguity).  
We tested the hypotheses H2 in the same way. 
Table 1 summarizes the observed (“O”) and the expected (“E”) numbers of reported, removed, self-
resolved, forwarded, and transformed defects for each team and the results the Chi-square tests. A 
precondition of this test is that the expected frequencies are not below 5. Because most expected 
frequencies are below 5, we test the hypotheses H1 and H2 on the aggregated data of the UKL and of 
the TUM teams, respectively. We used the procedures described in [FT89] to aggregate data.   
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O 8 2 8 10 4 27 1 2 20 2 2 3 1 0 8 SCR UKL 
E 4 2 12 9 4 26 5 3 15 1 1 5 2 1 6 
O 6 2 5 9 3 27 3 1 23 4 3 4 0 0 7 Statecharts UKL 
E 3 1 9 9 4 26 6 3 18 3 1 7 2 1 4 
O 4 2 3 - - - - - - - - - - - - OCTOPUS UKL 
E 2 1 6 - - - - - - - - - - - - 
O 2 1 5 9 3 28 7 2 23 2 2 3 2 1 7 UML UKL 
E 2 1 5 9 4 27 7 3 22 1 1 5 2 1 7 

Chi-square  
(p-level) 

UKL  .009985 .997092 .037973  
(no UML) 

.004681 .021563 
(no UML) 

O - - - 9 2 19 - - - 2 3 3 2 1 16 ROOM TUM 
E - - - 7 3 20 - - - 2 1 5 4 2 13 
O - - - 8 3 23 - - - 3 3 3 2 0 12 SDL TUM 
E - - - 8 4 22 - - - 2 1 6 3 2 9 
O - - - 5 2 21 - - - 7 4 3 1 0 14 Focus TUM 
E - - - 6 3 19 - - - 3 2 9 3 2 10 

Chi-square  
(p-level) 

TUM  - .959297 - .000009 .023047 

Table 1. Collected Data and Results of Chi-Square Tests  
As Table 1 shows, there were differences in the absolute numbers of incompletenesses, conflicts, and 
ambiguities that were reported, removed, and so on. For example, the SCR team reported 8 
incompletenesses, 2 conflicts, and 8 ambiguities, while the OCTOPUS team reported only 4 
incompletenesses, 2 conflicts, and 3 ambiguities. Because of the similarity of the applied RSLs and 
based on our personal judgement of the capabilities of the teams, we believe that these differences 
cannot be attributed to the RSLs.  On the other hand, the single team results show a consistent profile 
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of incompletenesses, conflicts, and ambiguities that were reported, removed, and so on, except for the 
UML team. For example, each of the SCR, Statecharts and OCTOPUS teams reported more 
incompletenesses and fewer ambiguities than one would expect based on the total numbers of these 
defects in the requirements document. However, the UML team behaved differently from the other 
UKL teams. The UML team reported a number of defects quite close to the expected number. This 
team said in the final interview that they did not report every issue they became aware of, but only the 
ones that they believed they could not solve themselves. Because of this lack of conformance with the 
experimental process, we treated the UML team as an outlier in two tests. The OCTOPUS 
requirements model was not very detailed. Therefore, it is omitted from further analysis. 

The results of the statistical tests are discussed in the remainder of this section. We do not discuss 
conflicts in detail, because their numbers are too low.  

H1—Reported Defects 
We can reject the null hypotheses H01 for the numbers of reported incompletenesses, ambiguities, and 
conflicts, as Table 1 shows. The observed numbers differ significantly from the expected ones. The 
application of a RSL leads to higher numbers of detected incompletenesses and conflicts and lower 
numbers of detected ambiguities, as one would expect based on the defect numbers in the document. A 
UKL team reported on average 14% of the known ambiguities, but 39% of the known 
incompletenesses. This result is noticeable. It shows that ambiguities are not detected just because the 
informal requirements are formalized. If the requirements engineer is not aware of an ambiguity while 
developing a requirements model, then a RSL does not help to detect the ambiguity. On the other 
hand, a RSL seems to help detect incompletenesses and conflicts, because they were reported more 
frequently than expected.  
H2—Removed Defects 
We cannot reject the null hypotheses H02 for the numbers of removed incompletenesses, ambiguities, 
and conflicts both at UKL and TUM, as Table 1 shows. When a RSL is applied, there is no difference 
between the numbers of removed incompletenesses, conflicts, and ambiguities and what one would 
expect based on the defect numbers in the document. 72% ambiguities and incompletenesses were 
removed on average by a UKL team. 56% ambiguities and incompletenesses were removed on 
average by a TUM team. 
H2—Self-resolved Defects 
We can reject the null hypothesis H02 for the numbers of self-resolved incompletenesses, ambiguities, 
and conflicts at UKL, as Table 1 shows. There is a significant difference between the numbers of 
defects that are self-resolved and their expected numbers. On average, a UKL team (except for the 
UML team) resolved 57% of the known ambiguities, but it resolved only 16% of the known 
incompletenesses without asking the customer. During the final interviews it became apparent that the 
teams often did not recognized ambiguities as such. Therefore, we conclude that ambiguities are more 
often unconsciously removed than are other types of defects. Unconscious disambiguation is a serious 
problem, because implicit assumptions are more likely than in our study to be wrong when the system 
is more complex. 
H2—Forwarded Defects 
We can reject the null hypotheses H02 for the numbers of forwarded incompletenesses, ambiguities, 
and conflicts both at UKL and TUM, as Table 1 shows. The observed numbers differ significantly 
from the expected ones. In accordance with our expectation, the application of an RSL leads to higher 
numbers of forwarded incompletenesses and conflicts and to a lower number of forwarded 
ambiguities, as one would expect based on the defect numbers in the document. On average, a UKL 
team forwarded only 9% of the known ambiguities, but it forwarded 21% of the known 
incompletenesses. In the case of the TUM teams, this difference is even bigger. On average, a TUM 
team forwarded only 8% of the known ambiguities, but it forwarded 31% of the known 
incompletenesses. This result confirms that the applied RSLs significantly reduce the level of 
ambiguity, however, they do not eliminate ambiguity.   
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H2—Transformed Defects 
We can reject the null hypotheses H02 for the numbers of transformed incompletenesses, ambiguities, 
and conflicts at UKL and at TUM, as Table 1 shows. The observed numbers differ significantly from 
the expected ones. The application of a RSL leads to more transformed ambiguities and fewer 
transformed incompletenesses than one would expect based on the defect numbers in the document. 
On average, a UKL team (except for the UML team) transformed 20% of the known ambiguities, but 
it transformed only 4% of the known incompletenesses. Again, the difference is bigger for the TUM 
teams. On average, a TUM team transformed 37% of the known ambiguities, but it transformed only 
13% of the known incompletenesses. 
If not detected and not removed, incompletenesses and conflicts tend to become forwarded, while 
ambiguities tend to become transformed (i.e., misinterpreted). This behavior of ambiguities is a 
problem, since such a misinterpretation can slip through undetected, because of the customers' 
reluctance to read requirements written in artificial language. Simulation, the other way of validating 
formal requirements, can show only the presence of misinterpretations but not their absence. 
Disastrous software failures may be the consequence.  
H3—Customer Participation 
There was a difference in the customer participation between the sites UKL and TUM. At UKL, the 
customer was involved from the beginning of the formalization process. At TUM, the customer was 
involved only at the end of the formalization process, when the final requirements model was 
evaluated by an interview with the team. This deviation of the actual course of the empirical study 
from the plan allows us to investigate a third hypothesis regarding ambiguities. We do not analyze 
incompletenesses in this respect, because the investigated requirements document contained mainly 
incompletenesses that could be resolved by reasoning. UKL and TUM students were equal good in 
reasoning. Thus, there were no significant differences in the numbers of removed incompletenesses 
between UKL and TUM teams. 
We expect a significant difference between UKL and TUM in the numbers of removed and 
transformed ambiguities. Humans are naturally skilled in resolving ambiguity. Thus, the ambiguities 
that were reported at UKL are those that need clarification. If there is no customer participation, as in 
the case of TUM, the likeliness of misinterpretations raises.  
H3: There is a difference between the UKL and TUM teams in the numbers of removed and 

transformed ambiguities. 
Table 2 shows the average numbers of reported, forwarded, and transformed ambiguities for UKL and 
TUM teams and the results of a Mann-Whitney U test (nonparametric variant of t test [FT89]).  

 Removed Ambiguities Forwarded Ambiguities Transformed Ambiguities 

UKL 27.3 3.3 7.3 

TUM 21.0 3.0 14.0 

p-value   0.49543 .512695 0.49543 

Table 2. Effect of Customer Participation 
We can reject the null hypothesis H03. There is a significant difference between the numbers of 
removed ambiguities at UKL and TUM. The UKL teams removed 72% of the known ambiguities, 
while the TUM teams removed only 55%. Consequently, there is also a significant difference between 
the number of transformed ambiguities at UKL and TUM. The TUM teams resolved twice as many 
ambiguities, 37%, the wrong way as did the UKL teams. The fact that there are no significant 
differences between UKL and TUM in the numbers of forwarded ambiguities shows the homogeneity 
of the two groups. Recall that a forwarded defect is a defect that was not observed. Therefore, the 
customer participation should not have an effect on the numbers of forwarded ambiguities. 
We have analyzed the single ambiguities that were removed by the two groups. Interestingly, each 
ambiguity that was reported and removed by an UKL team was also recognized and removed by a 
TUM team. That is, there were no ambiguities that could not be resolved without help. The difference 
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lies in the frequency; more UKL teams were able to remove an ambiguity, because they had access to 
the customer, than did the TUM teams. This observation confirms a key characteristic of ambiguity. 
Ambiguity, if it is noticed, needs immediate clarification. Any ambiguity that is removed by one team 
without a report, can be misinterpreted unconsciously by another team, and can raise a question for a 
third team. If this question is not answered, the number of transformed ambiguities grows.  

7. THREATS TO VALIDITY 
The following possible threats to the validity of this study have been identified:  

• The one-to-one mapping between team and RSL makes it difficult to prove that the observed 
differences between the UKL and TUM teams are really caused by the different customer 
participation (see hypothesis H3). It could be the case that the differences are caused by inherent 
differences among the RSLs, i.e., between SCR, Statecharts, and UML on one hand and ROOM, 
SDL, and Focus on the other hand. However, as mentioned previously, all RSLs are based on 
finite state machines. Therefore, the second explanation is unlikely. Note that the results regarding 
H1 and H2 are not affected by this problem, because we did not test for differences among the 
RSLs. 

• It was possible for the teams to exchange information. However, we told the teams not to do so 
and there was no exam at the end, thus, cheating made little sense. Since each team applied a 
different RSL, it was not possible for a team to copy the requirements model of another team in 
order to save effort. 

• The requirements document might not be representative in terms of size, complexity, and numbers 
of defects. The Tamagotchi system already exists, therefore, the requirements were well-
understood and the requirements document might expose a different defect profile compared to 
one describing a completely new system. However, we strongly believe that our results can be 
generalized to other requirements documents, as far as ambiguities and incompletenesses are 
concerned. The number of conflicts in the Tamagotchi requirements document is too low to draw 
significant conclusions on them. 

• The results regarding incompletenesses are valid only for incompletenesses that can be detected 
without domain knowledge. 

• The RE process that we followed in this case study assumes a relatively complete and detailed 
requirements document, before a RSL is used. However, if requirements models are created, they 
are usually created from a sketchy requirements document, in order to avoid describing things 
twice. The RE process that we followed is typical for safety-related domains such as the aerospace 
domain. 

• The subjects who participated in the case study are unlikely to be representative of professional 
requirements engineers. Therefore, we cannot generalize the results to that population. However, 
this replicated project type of study could not be done in industry because of the high cost. We 
believe that student experiments are useful as a pilot for later industrial experiments. For example, 
we can test hypotheses in a student setting in order to decide whether it is worth investigating 
them further in industrial settings. 

8. CONCLUSIONS 
This paper presented the results of an empirical study with RSLs. The participants applied RSLs to 
develop an executable requirements model from a given set of informal requirements whose defects 
were known to the experimenters. The students were told to report every defect they encountered in 
the informal requirements during formalization. We analyzed the reported issues, and we analyzed the 
requirements models based on what happened to those defects in the informal requirements that 
slipped through undetected. The results of our study are: (1) ambiguities are less frequently reported 
than other types of defects; (2) ambiguities are removed more often unconsciously, i.e., are correctly 
resolved without being reported, than other types of defects; (3) ambiguities are misinterpreted more 
often than other types of defects; and (4) ambiguities, if noticed, require immediate clarification.  
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The lesson learned from this empirical study is that conflicts and certain types of incompletenesses can 
be easily detected through formalization and automated checking of the resulting requirements 
models. However, requirements engineers should not rely on the formalization of informal 
requirements helping to spot ambiguities in informal requirements; only some ambiguities are 
detected. Moreover, ambiguities tend to become misinterpreted if they are not recognized and if they 
are not unconsciously self-resolved.  
Based on these results, we make two recommendations for the use of RSLs in RE processes: 
1. Inspection of informal requirements before their formalization. Since RSLs enforce precision, 

an ambiguity can become an unambiguously wrong formal requirement, which can slip through 
undetected, because of the customers' reluctance to read requirements written in artificial language 
and theoretical limitations of simulation. We recommend the inspection of informal requirements 
for ambiguities to avoid these problems. An inspection technique for spotting ambiguities is 
introduced in [Kam01]. 

2. Participation of customers and users during formalization. The development of requirements 
models from informal requirements is a task of requirements engineers, not customers or users. 
Nevertheless, we recommend participation of customers and users during the development of 
these models, not afterwards, in order clarify observed ambiguities as soon as possible. Spotted 
ambiguities that cannot be clarified immediately with the customer tend to become misinterpreted. 
If those misinterpretations are clarified later, costly rework of models may be required. 

The phenomenon of ambiguity was investigated empirically only in psycho-linguistics. We would like 
to encourage researchers to perform empirical research in requirements engineering to further 
investigate the impacts of ambiguity during formalization of requirements. Requirements specification 
languages are unambiguous, but customer requirements are usually stated in natural language first.  
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