
- 1 -

Integrating SCR Requirements into
Cleanroom Software Engineering

Christian Bunse and Erik Kamsties

Fraunhofer Institute for Experimental Software Engineering

Technopark II

Sauerwiesen 6

D-67661 Kaiserslautern, Germany

{bunse, kamsties}@informatik.uni-kl.de

Abstract
This paper describes the combination of two industrially
proven methods, SCR Requirements and Cleanroom Soft-
ware Engineering, to form a seamless method for the for-
mal specification and design of real-time systems. SCR
documents functional and non-functional requirements
such as timing and precision using a tabular notation of
mathematical functions. Cleanroom supports the develop-
ment of near-zero-defect software through formal methods
and statistical quality control. The formalism primarily
used in Cleanroom for specification and design is called
Box Structure Method (BSM). We show how SCR can be
integrated in BSM as a black-box-like description, and
how the syntax and semantics of box structures can be
extended to serve for real-time systems. Subsequently we
describe how BSM’s refinement and verification proce-
dures have to be modified according to our previous defini-
tions. The presentation is illustrated with a simplified
example of a safety injection system for a reactor core.

Keywords: Real-Time Systems, Formal Specification,
Cleanroom, Box Structure Method

1. Introduction
Today’s competitive pressure among software organiza-
tions and society’s increasing dependence on software have
led to a strengthened focus on software quality. The com-
munity not longer tolerates that software is released in the
belief that it isn’t possible to develop zero-defect software.
When considering embedded real-time systems, it must be
recognized that not only the company itself but also thou-
sands of people heavily depend on software with certifiable
quality (e.g., imagine defects in safety critical applications
like reactor shutdown or air traffic systems [7]).

To assure the high quality of embedded real-time software,
various formal methods supporting software development

have been published [12]. Cleanroom originally proposed
by H.D. Mills [15] allows the development of
near-zero-defect software with certifiable quality by using
formal techniques, organizational principles, and statistical
quality control. The application of Cleanroom has shown
remarkable results. So NASA/SEL [6], IBM [11], Univer-
sity of Maryland [19], Ericsson [22], and various other
organizations have recognized that not only can productiv-
ity and product quality be increased, but effort and failure
rates can also be decreased by applying the principles
espoused by Cleanroom.

In Cleanroom projects different weaknesses are encoun-
tered: Cleanroom claims to support the development of
different system types, but applying box structures1 to
embedded real-time systems reveals a need for modifica-
tion concerning the following areas [22].

 • The very early phase of requirements analysis is not
very well integrated with Cleanroom-based software
development processes (e.g., box structures do not
give enough support and do not provide sufficient for-
mality in the analysis phase).

 • The amount of functionality to be specified in real
world projects is normally large. Therefore it is diffi-
cult to express and completely specify the corre-
sponding black box.

Some solutions have been published to improve box struc-
tures to cope with these weaknesses. On the one hand it
was tried to formalize box structures to support a more sys-
tematic way for requirements representation and system
design [4,5]. Notations like Z or the Vienna Design
Method have been introduced into box structures. These
integrated approaches allow expressing of requirements
with a formal notation and help the specifier develop more

1. Box structures are a method for systematic system
development used in Cleanroom [14].

erik
Published in Proceedings of the 1st ISEW Cleanroom Workshop (held with ICSE-18), Berlin, Germany, March 1996.

- 2 -

precise and concise documentation as well as a better basis
for communication and verification [5]. Although Z or
VDM allow for formalization they don’t support needs
encountered with the domain of real-time systems such as
timing or precision. On the other hand SMO [2] tries to
combine box structures with SDL. Using documents of
different notations (e.g. SDL, Box Structures) in parallel
results in extra effort for keeping consistency.

In this paper we present a technique which circumvents the
weaknesses presented above. As mentioned in [4] tabular
notation is particularly useful for specifying function rules
to produce crisper, clearer, and more precise specifications.
We integrate SCR styled requirements, a formal method
for requirements representation [3,10], as a black box like
description into box structures. SCR was developed for
embedded real-time systems and has been used in various
projects. The integration results in a development process
which allow the development of near-zero-defect software
for embedded real-time systems.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview about SCR, Cleanroom, the Box
Structure Method (BSM), and a comparison of SCR and
BSM. In section 3, we describe the theory and practice
behind transforming SCR specifications into state boxes.
Section 4 provides an example of the transformation.
Finally we summarize the integration of SCR into Clean-
room and give directions for future work.

2. Review of SCR Requirements and
Cleanroom/BSM

2.1 SCR Requirements

The basic techniques of the Software Cost Reduction
(SCR) requirements method were developed by D. Parnas
and co-workers at the US Naval Research Laboratory
(NRL) [10]. The method has been extended to describe
system and software requirements and to represent func-
tional as well as non-functional requirements (i.e. timing,
precision). A toolset called SCR* to support writing and
checking SCR specifications was recently presented [8].
SCR consists of two main parts: a mathematical model of a
computer system called the Four Variable Model [17, 21],
and a tabular language of events and modes with formal
semantics [20], we called in the sequel A7 language.

Four Variable Model. The Four Variable Model (see Fig-
ure 11) describes requirements as a set of mathematical
relations on four sets of quantities, called the monitored,
controlled, input and output quantities. Monitored quanti-
ties influence the system behavior, whereas controlled
quantities are manipulated by the system. The environmen-
tal quantities of interest for the system (those to be moni-

1. This figure is taken from [9]

tored and/or controlled) are expressed as mathematical
functions over time (time-functions), since their values
change with time.

The system requirements are given by two relations,
namely NAT (nature), and REQ (required) from the moni-
tored to the controlled quantities. NAT defines constraints
imposed on the system by its environment, it explicitly
captures the limits of required behavior. Making con-
straints explicit helps define completeness of requirements.
REQ defines the system’s required external behavior.

The inputs and outputs that are associated with the sys-
tem’s input and output devices are resources available to
the software. The mapping from the monitored quantities
(system external) onto inputs (done by sensors) is specified
by the relation IN. Similar, the relation OUT specifies a
mapping from outputs to controlled quantities (done by
actuators). These two relations, when considered in con-
junction with NAT (if there are constraints) and REQ, form
software requirements. The actual behavior of the software
is later specified by relation SOF, supplied by the program-
mers, to enable verification against the requirements (NAT,
REQ, IN, OUT).

A7 language. The A7 language has been proven to be a
practical approach for specifying relations of the Four Var-
iable Model in the context of real-time systems. The A7
language is comprised of three constructs, namely condi-
tions, events, and modes. These are used together in a tabu-
lar notation.

A condition is a predicate on the environment (e.g.
whether a button is being pressed). Conditions are boolean,
although first-order predicate conditions that can be repre-
sented as a finite number of boolean conditions (e.g., value
ranges) are also expressible.

Figure 1: Four Variable Model

Environment

m
onitored

quantities

controlled
quantities

System

Softwareinput
devices

output
devices

NAT, REQ

IN SOF OUT

input
quantities

output
quantities

- 3 -

A change of a condition’s value is an event and is denoted
as

@T(condition)
or @F(condition)

The first form specifies the point in time when the value of
condition changes from false to true. Similarly, the latter
form specifies the time when condition becomes false. An
event might also depend on the values of other conditions.
A so-called conditioned event is denoted as

@T(cond1) WHEN [cond2]
or @F(cond1) WHEN [cond2]

whereby the first form specifies the point in time when
cond1 becomes true while cond2 is also true. The latter
form specifies the time when cond1 becomes false while
cond2 is true. The semantics of SCR propose three slightly
different definitions of conditioned events as discussed in
[1]. More complex events can be created by nesting events
or by using the boolean operators AND, OR.

A mode is a set of system states that share a common prop-
erty. A mode captures the system’s history. A modeclass is
a set of modes. The system is in exactly one mode of each
modeclass at all times. A mode transition occurs between
modes in the same modeclass, caused by an event (event
and mode transition happen at the same time).
Modeclasses are independent from each other. A
modeclass is a state machine, the modes are its states, the
events form its input language.

A tabular notation is used for writing specifications
because tables have been found to be easily read and
understood by engineers. Three types of tables, namely
condition table, event table, and mode transition table, are
defined. Each table represents a mathematical function. A
condition table defines a controlled quantity as a function
of a mode and a condition, whereas an event table defines a
controlled quantity as a function of a mode and an event.
These tables define the output of the state machine. If a
controlled quantity is purely a function of current inputs
from monitored quantities, then the mode can be omitted.
A mode transition table defines a mode as a function of the
previous mode and an event; by this table a modeclass and
its modes are specified. Examples are given in Tables 1, 2,
and 3.

A set of standard functions and relations is provided by
van Schouwen [20]. Among these there are functions to
access time-functions of quantities:

 • Next(event), Last(event) refers to the next (last) occur-
rence of this event

 • Drtn(condition) refers to the duration the condition
holds

Safety injection example. To illustrate the A7 language,
we consider a control system for a safety injection of a
nuclear plant [3,9]:

“The system uses a sensor to monitor water pressure
and adds coolant to the reactor core when the pressure
falls below some threshold. The system operator blocks
safety injection by turning on a “Block” switch and
resets the system after blockage by turning on a
“Reset” switch.”

Figure 1 shows the system in the view of the Four Variable
Model.

The switches and the sensor for water pressure are mod-
eled by three monitored quantities WaterPres, Block and
Reset. The safety injection is modeled by the controlled
quantity SafetyInjection. The resulting SCR tables are
shown in Tables 1, 2, and 3; SCR’s bracketing symbols for
identifiers are omitted.

Old
Mode

Event New Mode

TooLow @T(WaterPres ≥ Low) Permitted

Permitted @T(WaterPres ≥ Permit) High

Permitted @T(WaterPres < Low) TooLow

High @T(WaterPres < Permit) Permitted

Table 1: Mode Transition Table for Pressure

Mode Events

High False @T(Inmode)

TooLow
OR Permitted

@T(Block = On)
WHEN Reset = Off

@T(Inmode) OR
@T(Reset = On)

Overridden = True False

Table 2: Event Table for Overridden

Mode Conditions

High or Permitted True False

TooLow Overridden NOT Overridden

SafetyInjection = Off On

Table 3: Condition Table for SafetyInjection

Environment

System

Figure 2: Safety Injection System

WaterPres

Block

Reset

SafetyInjection

- 4 -

The Tables 1, 2, and 3 are part of the REQ relation. The
modeclass Pressure (Table 1) divides the continuous value
of water pressure into three classes TooLow, Permitted,
and High. Overridden (Table 2) indicates whether the
safety injection is blocked or not; it is a both monitored
and controlled quantity that is established to make the
specification more readable. The condition “Inmode” in
the event @T(Inmode) is triggered if a mode transition into
the mode of that row happens (Table 2); for example
@T(Inmode) in the second row of Table 2 means: “if the
mode High is entered, then Overridden becomes false.”

2.2 Cleanroom and the Box Structure Method

Cleanroom is a systematic process for developing
near-zero-defect software and was developed by H.D.
Mills (IBM, USA) [4,15]. In using Cleanroom the software
development organization makes extensive use of formal
methods and engineering discipline across all life cycle
phases, and puts the process under statistical quality con-
trol. Key features of Cleanroom are:

 • Organizational aspects (e.g. software development by
small teams instead of individual heroes).

 • Incremental development. The system specification is
analyzed to identify functions which can be devel-
oped in increments. These increments must fulfill var-
ious conditions and can be merged to form the
complete system. Increments are used to allow sys-
tem development in an intellectually controllable
manner.

 • Rigorous specification and design by usage of box
structures and correctness verification.

 • Usage testing. In Cleanroom the specification doesn’t
contain only functional requirements. The future sys-
tem usage is additionally modeled by identifying
externally visible system states, their interdependen-
cies, and probabilities of state transitions. This model
is used later to develop test cases and to perform certi-
fication.

 • Reliability Certification by applying statistical models
onto test results.

The Box Structure Method (BSM), originally developed
by Harlan D. Mills [14,16], provides a rigorous framework
for specification and design [2]. BSM relies on three basic
structures called black box (BB), state box (SB) and clear
box (CB) which can be nested in a hierachical system
structure. To develop a system by using BSM, Mills
defined a twelve-step algorithm [14] which allows building
a hierarchy of box structures in a stepwise refinement man-
ner. The main steps of the algorithm are:

 • Define black box
 • Define state box
 • Define clear box

The system description is expanded and refined with each
of these steps.

The black box describes a system by modeling its
externally visible behavior. All details about internal
structure and operations are omitted. The modeled
behavior is stated in terms of stimuli (S) and responses (R).
A stimulus is an input to the system (e.g. a command with
parameters). An response is an externally visible reaction
of the system (e.g. printing on a screen). Each response of
the system is determined by the system’s stimuli history
(S*), which contains all previously received stimuli.
Overall a function f: S*→ R is described.

The previously defined black box can be refined into a
state box. A state box describes a system’s behavior by
using an internal state (T), defined by analyzing required
stimulus history and responses. The internal state is used to
encapsulate parts of the stimulus history. Each response is
determined by stimulus and state histories. Overall a func-
tion g: (S × T)*→ R × T is described.

Finally the state box is refined into a clear box, which pro-
vides a procedural description of the system by presenting
more details about how stimuli are processed to determine
responses. The black box function g of the state box is
replaced by concurrent or sequential usage of new black
boxes. These boxes can be expanded at the next level into
new state and clear boxes.

The refinement of the three box types produces a hierarchy
of box structures. This hierarchy provides an effective
means for management control in system development.
The black box subsystems become well defined and inde-
pendent modules in the overall system by further refine-
ments [22].

Different notations have been published to describe box
structures. Mills [16] introduced the Box Design Language
(BDL) as a “language for recording, communicating, and
analyzing box structures.” The BDL organizes black boxes
in three parts (stimuli, response, and transition) and state
boxes in four parts (stimuli, responses, state, and machine).
A more formal syntax for describing box structures can be
found in [13].

2.3 Comparison of SCR and Cleanroom/BSM

The requirements specification is the concern of SCR and
BSM; it is the focus of SCR and the starting point of BSM
(the top-level black box of the hierarchy is taken as a
requirements specification). The REQ relation in SCR’s
Four Variable Model describes the system behavior. REQ
can be interpreted as a black box function from the BSM
point of view, because time-functions of monitored quanti-
ties (i.e. stimuli) are mapped onto time-functions of control-
led quantities (i.e. responses) without consulting an internal
state. Therefore, SCR’s Four Variable Model and BSM’s
top-level black box have the same abstraction level.

- 5 -

Due to the fact that SCR was originally developed for
real-time systems and BSM for information systems, we
found differences shown in Table 4, but no direct conflicts.

SCR’s A7 language implements the time-function concept
of the Four Variable Model in a restricted way. It deals
with events and reactions at the current time. Therefore it
seems suitable for use in BSM where time is only consid-
ered implicitly. The A7 language introduces new con-
structs like events and modes; we found a pragmatic
mapping onto BSM/BDL constructs as listed below:

 • Event → Stimulus
We interpret an event (a point in time at which a cer-
tain condition changes its value) on a monitored
quantity as a stimulus.

 • All changes to quantities due to an event → Response

An event triggers reactions, i.e., changes to the value
of one or more quantities. We interpret the set of all
changes to external visible (i.e. not established) quan-
tities due to an event as a response.

 • Using time-functions → Stimulus history

The A7 language provides the functions Last(),
Next(), and Drtn() for accessing the event history
stored in the time-functions of the environmental
quantities. Desired access functions can be specified.
We interpret the use of these functions as a definition
of stimulus histories.

 • Mode, environmental quantity → State

We interpret modes as states. Further, every environ-
mental quantity used in a condition (except the condi-
tions used in an event, i.e. @T(condition),
@F(condition)) can be seen as a state. This applies to
quantities used in the WHEN-clause of conditioned
events, quantities used in the condition columns of
condition tables, etc.

 • Event table/mode transition tables → state box
transition functions
Event table/mode transition tables and BDL’s transi-
tion functions are semantically equivalent. The differ-
ence is the syntax. An event table shows for each
value of a controlled quantity (part of response) the
events (stimuli) and modes (states) which can lead to
this value. A state box transition function shows for a
stimulus the response and next state depending on the
(abstract) state (compare Tables 1-3 and Figure 4 for
example).

In summary, the constructs of SCR’s A7 language match
the constructs of both BSM’s black box (stimulus history,
response) and state box (stimulus, state, response) descrip-
tion. The level of abstraction found in an A7 specification
depends on the use of the language. If modes are omitted
and only time-function are accessed, it is a black box
description. If modes are used, it is more of a state box
description but with one major difference: data is only
specified as far as externally visible as environmental
quantities; the specification of internal data isn’t a concern
of SCR.

The properties of SCR such as precise notation, compre-
hensive documentation of environmental constraints, hard-
ware characteristics, etc. form an enhancement of
Cleanroom/BSM in the context of real time systems.

3. Integration of SCR Requirements into
Cleanroom/BSM

The analysis in section 2.3 implies integrating SCR in
BSM rather than using SCR as a front-end because SCR’s
abstraction level is between black- and state box of BSM.
We decided to use SCR as a top-level description because
SCR has been proven to be readable for customers and
developers [8]. The main steps of our modified BSM algo-
rithm are:

 • Write SCR specification using A7 language
 • Define state box
 • Define clear box

This approach of integration resulted in the following
modifications to BSM, which are discussed in the remain-
der of this section:

SCR’s Four Variable Model Cleanroom/BSM

Inputs and outputs to the
system are related to envi-
ronmental quantities which
represent physical devices.

Inputs and outputs are con-
sidered, but not physical
devices.

Inputs and outputs to the
system are functions of
time. Timing can be
described explicitly by
mathematical functions.

Time is considered implic-
itly. A response is an
immediate reaction to a
stimulus. The stimulus his-
tory contains the stimuli
ordered by the time of
reception.

The contents of the specifi-
cation comprise system
requirements (REQ), soft-
ware requirements (derived
out of NAT, REQ, IN,
OUT), hardware character-
istics (IN, OUT), and con-
straints of the environment
(NAT).

Functional requirements
are considered in BSM
exclusively, no differ-
ences between system and
software are made. The
top-level black box and the
usage model forms the
specification in Clean-
room.

Table 4: Comparison of the Four Variable Model and
Cleanroom/BSM

- 6 -

 • Syntax and semantics for stimuli, responses, states, and
transitions are extended to guarantee traceability in
terms of constructs between SCR and the top-level
state box.

 • The algorithm for state box derivation is modified so
that a SCR specification can be used.

 • A method is defined to verify the state box against the
SCR specification.

Finally, the implications on the Cleanroom process, espe-
cially usage modeling and incremental planning, are ana-
lyzed.

3.1 Syntactic and semantic extension of the top-level
state box

We have developed an extended notation for state boxes
which is based on the concepts of BSM/BDL and borrows
the event construct and the tabular notation from SCR.
This notation guarantees traceability from SCR specifica-
tion to the top-level state box and keeps documentation
consistent.

The syntax of a stimulus is equal to those of an event in
SCR without the WHEN-clause.

Definition 1: Stimulus

Stimuli are noted by:
Si: <stimulus> with i ∈ |N0

The BNF1 for <stimulus>:

As mentioned in section 2.3, all changes to not-established
quantities due to an event form a response. Therefore we
make a distinction between atomic responses and
responses. An atomic response is a change of one
not-established quantity caused by an event. A response
consists of all atomic responses caused by a single event.
Atomic responses are denoted by assignments.

1. Non-terminal symbols are “→”, “|”, and identifiers
written in “<brackets>”. Informal statements are
printed in italic.

Definition 2: Atomic response

Atomic responses are noted by:
Rj:<atomic-response> with j ∈ |N

The BNF for <atomic-response>:

Since we interpret modes and environmental quantities
used in certain conditions as states, we introduce state var-
iables to represent these modes and quantities. A state var-
iable is declared as an enumeration of its values.

Definition 3: State variable declaration

State variables are declared by:
Ek: <state-definition> with k ∈ |N

The BNF for <state-definition>:

The state T of the state box is the set of state variables. The
concrete value of a state variable can be questioned or
assigned.

Definition 4: State comparison and state assignment

The BNF for <state-comparison> and
<state-assignment>:

Since the experiences with tables for documentation are
promising [8,10] we use modified selector tables from
SCR originally introduced by van Schouwen [20] to
describe the state box transition functions.

<stimulus> → @T(<predicate>) |
@F(<predicate>)

<predicate> → <monitored-quantity>
<relational-operator>
<value>

<monitored-quantity> → name of a monitored
quantity

<relational-operator> → one of { =, ≠, <,>, ≤, ≥}

<value> → as declared in the SCR
specification

<atomic-response> → <controlled-quantity> :=
<value>

<controlled-quantity> → name of a controlled
quantity

<value> → as declared in the SCR
specification

<state-definition> → <name> ::= {<value-list>}

<value-list> → <value-list>,<value> |
<value>

<name> → #name of the modeclass# |
#name of the environmental
quantity#

<value> → name of mode defined for
this modeclass |
name of a value of this
quantity

<state-comparison> → <name>
<relational-operator>
<value>

<state-assignment> → <name> := <value>

<relational-operator> → one of { =, ≠, <, >, ≤, ≥ }

<name> → name of state variable

<value> → name of a value of this
state variable

- 7 -

Definition 5: State box transition function

Let s be a stimulus, T be the state, S1, ..., Sn be boolean
expressions from state comparisons,
R1,1, ..., Rn,m be atomic responses and
T1,1, ..., Tn,m state assignments. Then the tabular nota-
tion

Stimulus s

defines a state box transition function Y that is part of
the state box function:

A state box description consists of a list of stimuli, a list of
responses, a list of state variable declarations, and a set of
state box transition functions noted by tables. An example
of this state box notation is given in chapter 4.

We enrich the semantics of stimulus and response by nam-
ing the quantities (associated with physical devices) and
their (abstract) values. Instead of an informal specified
stimulus “request to start continuous SOS broadcast”, we
can write more precisely “@T(Receiver = transmit-SOS)”.
Note that the Four Variable Model and its time-functions is
not referred in our state box notation, despite of using iden-
tifiers of environmental quantities. The next section shows
how a transformation of a SCR specification into a state
box with the syntax given above can be done.

3.2 Derivation of the top-level state box

With the extended syntax and semantics of top-level state
boxes we can explain how to extract them from SCR spec-
ifications. To do so we have defined a seven step algorithm
(see Figure 3). This algorithm replaces the activities pro-
posed by Mills [14] to derive a system state box from a
system black box. The algorithm itself uses SCR’s REQ
relation for state box derivation. The relations IN and OUT
are used in later steps of BSM. The contents of these rela-
tions are too specific for top-level boxes but have to be
defined in lower levels of design. The algorithm depends
on four major steps. These are:

1. Find all stimuli and atomic responses
2. Find the state box state
3. Define the state box transition function
4. Verify the state box against the SCR specification

State Response Next State

S1 R1,1, ..., R1,m T1,1, ..., T1,m

...

Sn Rn,1, ..., Rn,m Tn,1, ..., Tn,m

({R1,1, ..., R1,m}, {T1,1, ..., T1,m}) if S1 ∈ T

({Rn,1, ..., Rn,m}, {Tn,1, ..., Tn,m}) if Sn ∈ T
{Y(s,T) = ...

1. Understand the SCR specification of the system.

2. Find all stimuli.

 2.1 Define @T(SystemInit) as stimulus for system initiali-
zation.

 2.2 Each event on a monitored quantity that doesn’t use the
WHEN-clause is a stimulus.

 2.3 Each event on a monitored quantity that uses the
WHEN-clause is a stimulus. Note: only the first event
part without WHEN-clause is the stimulus.

3. Find all atomic responses.

 3.1 The range of all event/condition table functions used for
not established quantities form the set of atomic
responses.

4. Define the state of the state box

 4.1 Take modeclasses as state variables and the single
modes as values.

 4.2 Take each quantity mentioned in a condition (except
those used in an event, i.e. @T(condition), @F(condi-
tion)) as state variable. Note: it may be necessary to
invent new stimuli to guarantee that those state varia-
bles are manipulated correctly.

5. Define the transition functions of the state box

For all stimuli:

 5.1 Get the response and next state caused by a stimulus

- Collect all atomic responses caused by the actual stim-
ulus.

- If the event corresponding to the actual stimulus is
used within a mode transition table, insert a state
assignment.

- If the stimulus was invented within step 4.2, an ade-
quate state assignment has to be inserted

- Each change in value of a quantity mentioned in a con-
dition (step 4.2) is modeled as an assignment to the
corresponding state variable.

- Reactions correlated to @T(Inmode) events are used
as atomic responses for the current transition func-
tion, if the state variable is set to a value correspond-
end to the mode used for @T(Inmode) by the actual
stimulus.

 5.2 Get preconditions on state required for actual stimulus

- Expand modes used in condition and event tables to
boolean expressions about corresponding state varia-
bles.

- Stimuli gathered within step 2.3 use the condition of
the WHEN-clause as state comparison.

 5.3 Describe transition function by using the table notation.
6. Optimize state box Specification.

 6.1 Remove all state variables which are only set and never
used within the state box. This means removement of
assignments to them either.

7. Verify state box by answering a set of correctness ques-
tions.

Figure 3: Algorithm for transforming an SCR
document into a state box

- 8 -

We have described that events on monitored quantities can
be mapped on stimuli (see section 2.3). But there is one
exception, the event @T(Inmode) (see section 2.1) has to
be treated when defining transition functions. Considering
conditioned events (e.g. @T(Block = On) WHEN Reset =
Off) special rules must be applied on the WHEN-clause;
the first event part (e.g. @T(Block = On) is used as stimuli.
Furthermore we insert a special stimulus called
@T(SystemInit), since the system must be in a determined
state after invocation.

In Section 3.1 we defined atomic responses as
event-caused changes of non-established quantities. This
definition allows to identify the range of these quantities
condition and event table functions as the set of atomic
responses.

The set of state variables of the state box can be found by
using the modeclasses and all quantities contained in con-
ditions (except those used in an event, i.e. @T(condition),
@F(condition)). For example, the quantity used in the
WHEN-clause of conditioned events has to be modeled as
a state variable (e.g., insert a new state variable for Reset).
But state variables are independent from monitored quanti-
ties which causes a need for inserting new stimuli to guar-
antee for correct handling of the newly inserted state
variable.

Preconditions for defining transition functions are fulfilled,
which can be modeled by using tables as defined in section
3.1 This can be done by applying algorithm rules 5.1, 5.2,
and 5.3. It must be guaranteed that @T(Inmode) events
which initiate reactions on entering a mode are considered
in transition functions responsible for entering a specific
state.

Verification of the transformation can’t be done formally.
Instead the belief in the correctness of transformation must
be built by answering correctness questions which show
that the SCR specification is equal to the newly defined
state box. An informal approach naturally isn’t as good as
a formal one because correctness shouldn’t depend on
humans. But performing a formal verification means build-
ing a SCR specification out of the state box and comparing
it against the original [14]. Major modifications, as needed
here, make it difficult or impossible to do such a verifica-
tion. The following set of questions is applicable for infor-
mal verification:

1. Do all state variables have a determined value after
system invocation?

2. Are all quantities concerned?
3. Are all relevant events modeled as stimuli?
4. Are the ranges of event and condition table func-

tions modeled as set of atomic responses?
5. Is the functionality of each stimuli complete?
6. Are all modeclasses modeled as state variables?
7. Are all states of state variables set?

8. Are all reactions on @T(Inmode) events modeled
correctly?

9. Are all simplifications used correctly?

By answering each of these questions with “Yes” we
believe that the algorithm was performed correctly and that
the state box expresses all requirements as mentioned in
the SCR document.

After performing the algorithm given above, for deriving
the top-level state box, system development is continued
by applying the BSM algorithm as defined by Mills [14].

The presented state box notation and algorithm are limited
to discrete-valued quantities but is seems easy to cover
continuous-valued quantities also. Further limitations are
imposed by the absence of time-functions in the state box,
thus requirements on time (expressed in SCR specifica-
tions by the functions Last(), Next(), Drtn()) cannot be
propagated into the state box.

3.3 Further implications for the Cleanroom Process

The use of SCR specifications as a base that can be trans-
formed into an extended state box is a prerequisite for a
successful integration of SCR into Cleanroom. We have
defined a technique to specify, design, and implement
embedded real-time systems in a systematic manner. Con-
tributions to the results of Cleanroom are also based on
techniques like statistical testing and incremental develop-
ment [4]. To show that our approach is usable for real
projects, we have to show that the SCR specification can
be used on all activities which require black box informa-
tion. These activities are usage modeling and incremental
development planning.

A “Usage Model” can be defined by using the SCR specifi-
cation instead of the system black box. The externally visi-
ble states and their interdependencies are modeled
explicitly in SCR by modes and mode transitions. These
definitions can be used for usage modeling. The needed
probabilities have to be identified manually.

Incremental planning can be done using SCR because
needed system functionality is modeled explicitly by the
table types. Furthermore increments can be found by iden-
tifying independent sets of monitored and controlled quan-
tities. Decisions about assigning functions to increments
and choosing what sequence of increments to develop have
to be done by using experience and domain knowledge.

The facts stated above lead us to the assumption that our
approach allows the development of embedded real-time
software according to the principles of Cleanroom Soft-
ware Engineering.

3.4 Preliminary Validation

To show that the presented technique can be used in prac-
tice, we show that there are no inconsistencies in syntax or
semantic. Usage of a consistent notation and slight modifi-

- 9 -

cation of the box structure algorithm allows to support
traceability and changeability. It supports verification of
each development step.

Uniform notation in SCR and box structures allow to trace
requirements from specification to code by using the box
structure hierarchy. Traceability between SCR and box
structures is one supposition for propagating changes.
Changes in the requirements document itself can be propa-
gated easily to the derived state box by reapplying the
defined algorithm on affected parts. The algorithm allows
updating the existing state box and verifying that the per-
formed changes are correct. For lower levels of box struc-
ture hierarchy the BSM allows propagating changes by
following the rules of the box structure algorithm.

Verification of development steps is guaranteed by using
BSM without changes for latter development steps (verifi-
cation rules by Mills [14]) and by using the defined set of
correctness questions to check the state box against the
SCR specification. These combined approaches allow veri-
fication of each development step from specification to
code and establishing intellectual control upon the process.

4. Example and Experiences
Safety injection example. To illustrate our approach we
use the safety injection example introduced in section 2.1
By applying our algorithm to the SCR tables a state box
description of the “Safety Injection System” is developed.
There are seven stimuli essential for defining a state box.
These are:

S0: @T(SystemInit)
S1: @T(WaterPres ≥ Low)
S2: @T(WaterPres ≥ Permit)
S3: @T(WaterPres < Low)
S4: @T(WaterPres < Permit)
S5: @T(Block = On)
S6: @T(Reset = On)
S7: @T(Reset = Off)

The stimulus S0, although not mentioned in the SCR
example, is required for defining an initial state. Stimuli S7
has to be considered as special case because the necessity
of its existence was recognized when defining state. At that
time a state variable for resets had to be defined, but within
the SCR specification the state is set to “On” and never to
“Off.” Therefore a new stimulus was defined which allows
setting the “Reset” state variable back to “Off”.

After completing step two of the algorithm the identifica-
tion of atomic responses is required. Atomic responses are:

R1: SafetyInjection := Off
R2: SafetyInjection := On

By having stimuli and atomic responses defined we
develop the state of the state box. Careful analysis of SCR

tables leads to three state variables needed for a state box
description. These are:

E1: #Pressure# ::= {TooLow, Permitted, High}
E2: #Overridden# ::= {True, False}
E3: #Reset# ::= {On, Off}

The definition of state variable E3 causes some complex
actions to take place. Because the Reset quantity is used in
a conditioned event, a “Reset” state variable has to be
defined. To guarantee the correct manipulation of this state
variable, a new stimulus (S7) has to be invented.

Having stimuli, atomic responses, and state variables
defined, we can now describe transition functions caused
by a specific stimuli. Figure 4 shows the resulting tables.
S3’s function was found by using its “Old Mode” as pre-
condition (rule 5.2), by assigning its “New Mode” to the
corresponding state (rule 5.1), by identifying an assign-
ment to “#Overridden#” as result of the previous state
assignment (rule 5.1), and by identifying the assignment
“SafetyInjection = On” as result of the assignment to
“#Overridden#”. Stimulus S7 only performs a state transi-
tion and produces no externally visible response.

Within step six of the algorithm the state box description is
optimized. Careful analysis of the presented example
shows, that the state variable #Overridden# is only updated
but never used. Therefore the state variable itself and all
related assignments can be removed. The optimization
proves the statement of section 2.1, “Modeclass Overrid-
den is established to make the specification more reada-
ble.” In step seven of the algorithm all questions can be
answered with yes. This leads to the assumption that the
modeled state box is correct.

Experiences. In addition to the previous example, our
approach was used on other examples like the buoy prob-
lem stated by Mills [14] and a parking garage system [18]
with remarkable results (e.g., the parking garage system
shows no failures while testing code statistically). We have
had different experiences. The use of a uniform notation
supports a comprehensive understanding of the complete
documentation and verification of development steps. Fur-
thermore, by providing an algorithm which doesn’t require
much effort to be executed and which allows for automa-
tion, our approach seems to be easily adaptable to real
world projects.

While performing the algorithm different times we have
learned that the abstraction levels of the SCR specification
and the refined state box didn’t differ as much as a black
box and a state box in BSM. This is due to the fact that an
SCR specification contains modes which can be mapped
directly onto states, while black boxes, as defined by Mills
[14], didn’t contain any information on system states with
the exception of stimulus history. Nevertheless the pro-
posed transformation is useful because it provides different

- 10 -

Stimulus S0: @T(SystemInit)

Stimulus S1: @T(WaterPres ≥ Low)

Stimulus S2: @T(Water Pres ≥ Permit)

Stimulus S3: @T(WaterPres < Low)

Stimulus S4: @T(WaterPres < Permit)

Stimulus S5: @T(Block = On)

Stimulus S6: @T(Reset = On)

Stimulus S7: @T(Reset = Off)

State Response Next State

True SafetyInjection := Off #Pressure# := Permitted
#Overridden# := False
#Reset# := Off

State Response Next State

#Pressure# = TooLow SafetyInjection := Off #Pressure# := Permitted
#Overridden# := False

State Response Next State

#Pressure# = Permitted SafetyInjection := Off #Pressure# := High
#Overridden# := False

State Response Next State

#Pressure# = Permitted SafetyInjection := On #Pressure# := TooLow
#Overridden# := False

State Response Next State

#Pressure# = High SafetyInjection := Off #Pressure# := Permitted
#Overridden# := False

State Response Next State

(#Pressure# = TooLow OR
 #Pressure# = Permitted) AND
#Reset# = Off

SafetyInjection := Off #Overridden#:= True

State Response Next State

#Pressure# = Permitted #Overridden# := False

#Pressure# = TooLow SafetyInjection := On #Overridden# := False
#Reset# := On

State Response Next State

True #Reset# := Off

Figure 4. State Box Function

- 11 -

views (SCR view and state box view) onto the system. The
SCR view allows checking whether the device control is
complete (e.g. a missing event). The state box view allows
checking whether all stimuli are considered and whether a
response to a specific stimuli is complete. By considering
views we are able to detect inconsistencies and find
requirements that have to be modeled more carefully.

5. Conclusions
We presented a technique for integrating SCR require-
ments into Cleanroom Software Engineering by combining
SCR and the Box Structure Method. We have explored dif-
ferences and commonalities of both methods, and have
recognized that SCR concepts can be mapped onto BSM
concepts and that the underlying models of both methods
match. Based on these findings, we have defined how the
SCR specification can be used as starting point for box
structures and how to transform it into a state box. This
definition has led to syntactical and semantical extensions
of top-level state boxes, to an algorithm for extracting such
boxes, and to a set of correctness questions for verifying
the state box against the SCR specification. We have
shown that our technique has no further negative implica-
tions for BSM (e.g. traceability, verifiability and changea-
bility) or for the Cleanroom process (e.g. usage modeling).

Overall our technique provides sufficient formality for
requirements representation in the analysis phase by using
an exact and understandable notation. The method helps to
express and specify completely specify requirements for
large systems. These advantages can be propagated into
box structures and developed further. By using BSM and
other Cleanroom techniques it is possible to develop
near-zero-defect software for embedded real-time systems.

Currently we are evaluating the work presented here in the
context of student experiments and industrial case studies.
We are trying thereby to validate our technique and to
prove that it is applicable to real world projects.

Further work concentrates on extending the syntax and
semantics of box structures to allow for mapping different
SCR notational elements, that have not yet been consid-
ered. Related to this work are questions on how require-
ments on time can be modeled explicitly to assure their
formal representation in high levels of specification and
design.

Acknowledgments
The authors wish to thank Dieter Rombach for his valuable
comments and for fruitful discussions throughout the research.
We also would like to acknowledge Constance Heitmeyer, Stuart
Faulk, and Ralph Jeffords (NRL, USA) for their help on SCR,
Christopher Lott for reviewing this paper, and all the members of
the Software Engineering Research Group at the University of
Kaiserslautern.

References
[1] Joanne M. Atlee and John Gannon. State-Based Model
Checking of Event-Driven System Requirements. IEEE Transac-
tions on Software Engineering, 19(1):24–40, Jan. 1993.

[2] H. Cosmo, A. Sixtensson, and E. Johansson. SMO - A step-
wise refinement and verification method for software systems. In
Proceedings of SDL forum, Glasgow, October 1991.

[3] P.-J. Courtois and D. L. Parnas. Documentation for Safety
Critical Software. In Proceedings of the 15th International Con-
ference on Software Engineering, pages 315–323. IEEE Compu-
ter Society Press, May 1993.

[4] M. Dyer. The Cleanroom Approach to Quality Software De-
velopment. Wiley and Sons, 1992.

[5] D.T. Fetzer and J.H. Poore. Using Box Structures with the Z
Notation. In Proceedings of the 26th Annual Hawaii International
Conference on System Sciences, January 1992.

[6] S. Green, A. Kouchakdjian, V. Basili, and D. Weidow. The
Cleanroom Case Study in the SEL: Project Description and early
Analysis. Technical Report SEL-90-002, NASA-SEL, March
1990.

[7] Mats P.E. Heimdahl and Nancy G. Leveson. Completeness
and Consistency Analysis of State-Based requirements. In Pro-
ceedings of the 17th International Conference on Software Engi-
neering, 1995.

[8] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw. Scr*: A
Toolset for Specifying and Analyzing Requirements. In Proceed-
ings of the 10th Annual IEEE Conference on Computer Assur-
ance, Gaithersburg, MD, USA, June 1995.

[9] C. Heitmeyer, Bruce Labaw, and Daniel Kiskis. Consistency
Checking of SCR-Style Requirements Specifications. In Proceed-
ings of the IEEE International Symposium on Requirements Engi-
neering, pages 56–63, York, England, March 1995.

[10] Kathryn L. Heninger. Specifying Software Requirements for
Complex Systems: New Techniques and their Application. IEEE
Transactions on Software Engineering, SE-6(1):2–13, January
1980.

[11] Richard C. Linger. Cleanroom Software Engineering for Ze-
ro-Defect software. In Proceedings of the 15th International Con-
ference on Software Engineering, pages 2–13, Los Alamitos
California, May 1993. IEEE CS Press.

[12] Shaoying Liu, Victoria Stavridou, and Bruno Dutertre. The
Practice of Formal Methods in Safety-Critical Systems. Journal of
Systems and Software, 28(1):77–87, January 1995.

[13] Hailong Mao. The Box-structure Development Method. PhD
thesis, University of Tennessee, Knoxville, USA, December
1993.

[14] H.D. Mills. Stepwise Refinement and Verification in
Box-structured systems. IEEE Computer, pages 23–36, June
1988.

[15] H.D. Mills, M. Dyer, and R.C. Linger. Cleanroom Software
Engineering. IEEE Software, pages 19–24, September 1987.

[16] H.D. Mills, R.C. Linger, and A.R. Hevner. Principles of In-
formation System Analysis and Design. Academic Press, Inc.,
1986.

- 12 -

[17] David L. Parnas and Jan Madey. Functional Documentation
for Computer Systems Engineering (version 2). CRL Report No.
237, McMaster University, CRL, Telecommunications Research
Institute of Ontario (TRIO), Hamilton, Ontario, Canada, Septem-
ber 1991.

[18] Wolfram Petsch and Klaus Schmid. Projekt
Parkhaussteuerung; Systemdokumentation. Technical Report,
University of Kaiserslautern, 1993.

[19] R.W. Selby, V.R. Basili, and F.T. Baker. Cleanroom Soft-
ware Development: An Empirical Evaluation. IEEE Transactions
on Software Engineering, pages 1027 – 1036, September 1987.

[20] A. John van Schouwen. The A-7 Requirements Model:
Re-examination for Real-Time Systems and an Application to
Monitoring Systems. CRL Report No. 242, McMaster University,
CRL, Hamilton, Ontario, Canada, February 1993.

[21] A. John van Schouwen, David Lorge Parnas, and Jan Madey.
Documentation of Requirements for Computer Systems. In Pro-
ceedings of the IEEE International Symposium on Requirements
Engineering, pages 198–207, San Diego, California, USA, Janu-
ary 1993.

[22] C. Wohlin, A. Sixtensson, P. Runesson, and E. Johansson.
Cleanroom Software Engineering Applied to Telecommunica-
tions. In Proceedings of Nordic Seminar on Dependable Comput-
ing Systems, August 1992.

